Kaydon Thinfinite bearing solutions Precision Reali-Slim® Thin Section Bearings ### Identification of Reali-Slim® Bearings Reali-Slim bearings are marked for complete identification with an (8) or (9) digit part number. Positions 1-8 identify materials, size, type, and precision. Position 9 (optional) identifies non-standard internal fit. ### Identification of Reali-Slim Bearings (continued) | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-------------|----------|--------|------|------|------|------|-----------|-----------|--------------| | Example | K | G | 1 | 2 | 0 | X | P | 0 | L | | Description | Material | Series | Size | Size | Size | Туре | Separator | Precision | Internal Fit | #### Position 6 – Bearing Type Angular contact single bearing (not ground for universal duplexing) Angular contact pair—duplexed back to back Radial contact Angular contact pair—duplexed face to face Angular contact pair—duplexed tandem Angular contact single bearing—ground for universal duplexing Four-point contact Other ### Position 7 – Separator - Bearing Type noted - C Non-metallic composite, segmental, "snap-over" type C, X - D Phenolic laminate, one-piece ring, "snap-over" type C, X - E Brass, segmental "snap-over" type C, X - L Nylon one-piece molded ring with "snap-over" pockets C, X - N Nylon molded strip with "snap-over" pockets C, X - Standard one-piece formed ring with "snap-over" pockets- C, X - Stainless steel, formed ring "snap-over" type C, X - V Brass, formed ring, "snap-over" pockets C, X - X PEEK, one-piece molded ring with "snap-over" pockets C, X - G Nylon one-piece molded ring with circular pockets A - H Phenolic laminate one-piece machined ring with circular pockets A - J Nylon molded strip with circular pockets A - K Phenolic laminate, riveted two-piece ring type A, C, X - Q PEEK, one-piece molded ring with circular pockets A - R Standard one-piece formed ring with circular pockets A - U Stainless steel, formed ring circular pockets type A - Y Brass, formed ring, circular pockets type A - M Formed wire strip or segmental cage, "snap-over" pockets A, C, X - W Formed wire strip or segmental cage, "snap-over" pockets C, X - F Full complement bearing A, C, X - 5 Helical coil spring C, X - Other (toroid ball spacers, spacer slugs, spacer ball or others available) - A, C, X #### Position 8 – Precision (ABEC Specifications are per ABMA Standard 26.2) - Kaydon Precision Class 1 per ABEC 1F - Kaydon Precision Class 1 with Class 4 Runouts - Kaydon Precision Class 1 with Class 6 Runouts - Kaydon Precision Class 3 per ABEC 3F - Kaydon Precision Class 4 per ABEC 5F - Kaydon Precision Class 6 per ABEC 7F - 8 Other #### Position 9 – Bearing Internal Fit - A .0000" to .0005" Clearance - .0000" to .0010" Clearance .0000" to .0010" Preload - .0005" to .0010" Clearance - .0005" to .0010" Preload K .0000" to .0005" Preload - .0005" to .0015" Clearance - .0005" to .0015" Preload - .0010" to .0020" Clearance - .0010" to .0020" Preload - .0015" to .0025" Clearance - .0010" to .0015" Preload - **G** .0020" to .0030" Clearance - .0015" to .0025" Preload - .0030" to .0040" Clearance - .0020" to .0030" Preload - .0040" to .0050" Clearance - **Z** Other clearance or preload not specified above - .0050" to .0060" Clearance **Blank** Standard default clearance (see Precision Tolerances tables in Section 2 of Catalog 300 for default clearance by bearing size) - Type X or C = Diametral Preload or Clearance - Duplexed Type A = Axial Preload or Clearance **Note:** Above internal bearing fits apply to unmounted bearings only. Mounting fits can greatly affect final internal bearing fit. ### Kaydon[®] Makes It Easy to Design with Reali-Slim Bearings As comprehensive as each new edition of this catalog is, it's just one of many tools developed by Kaydon Bearings to help engineers evaluate thin section bearings for their applications. At our website (www.kaydonbearings.com), for example, you'll find CAD downloads, an interactive bearing selector and advanced design software to make your job much easier. #### **CAD Downloads** CAD drawings are available for download in 38 different formats (e.g., AutoCAD, DXF, SolidWorks). Simply select the type of bearing you want from the drop-down menu and go to its page. There you can find the part number that matches the dimensions or capacities you need. Simply register or log in, and you'll be able to download the file by clicking on the part number. From there you can view the bearing in 3D or download the file in your preferred format. ### **Interactive Bearing Selector** Kaydon's interactive bearing selector lets you search our online catalog and download 2D or 3D drawings to simplify the selection process. Search by part number (even if it's incomplete) or by bore size, outside diameter, and/or width minimums and maximums... in inches or millimeters. ### Reali-Design® and Reali-Design MM® When Kaydon introduced it in 1994, Reali-Design software quickly became the go-to program for anyone thinking about specifying thin section bearings. This innovative program has saved engineers countless hours by doing complex power transmission computations for them. Reali-Design and Reali-Design MM software (for Reali-Slim inch and metric bearings, respectively), can: - save hours of tedious computations - reduce bearing selection time to seconds - accurately compute essential life and load analyses - determine safe operating speeds - calculate load deflections These programs (PC System requirements: Windows® 95 or later; 50 MB of free drive space) are valuable supplements to this catalog. They include a CAD-ready DXF library, training modules, data sheet creation program, life calculations, torque and deflection graphs, and much more. For more details of this user-friendly software, turn to <u>Page 110</u>. To get your copy of Reali-Design (including Reali-Design MM), contact Kaydon or simply download it from our website, <u>www.kaydonbearings.com</u>. Introduction ### **Table of Contents** ### Page Number | Section 1- | — An Introduction to Reali-Slim Thin Section Bearings | 7 | |-------------------|--|-------------| | | ■ Product Line Overview | | | | ■ Examples of Design Efficiency | 9 | | | ■ Bearing Load Scenarios. | | | | General Information and Availability Chart | | | | ■ General Specifications for Standard Bearings | 13 | | Section 2- | — Selection Tables for Standard Reali-Slim Bearings | 14 | | | ■ Open Reali-Slim Bearings Inch Series, AISI 52100 – Types A, C, X. | 15 | | | ■ Sealed Reali-Slim Bearings, AISI 52100 – Types C, X. | | | | Precision Tolerances and Recommended Fits for Reali-Slim Bearings | | | | ■ Endurakote - Plated Reali-Slim Bearings. | | | | Precision Tolerances and Recommended Fits for Reali-Slim Bearings with Endurakote Plating | | | | ■ Stainless Steel Reali-Slim Bearings ■ Stainless Steel Open Reali-Slim Bearings – Types A, C, X | | | | ■ Stall liess Steel Open Reali-Sill Dealings – Types A, C, X. | | | | Precision Tolerances and Recommended Fits for Reali-Slim MM Metric Series Bearings. | | | | ■ Metric Series Ball Bearings (BB Series) | | | | ■ Ultra-Slim® Thin Section Bearings – Types A, C, X. | | | | ■ Precision Tolerances and Recommended Fits for Ultra-Slim Bearings | | | | ■ Reali-Slim TT® Series Small-scale, Thin Section Turntable Bearings | 86 | | Section 3- | — Applications Engineering | 89 | | | ■ Selection Recommendations. | | | | ■ Capacity, Life, and Load Analysis | 95 | | Section 4 | Separator Types, Bearing Performance and Reali-Design Softwar | e 99 | | | ■ Separator Types. | | | | ■ Limiting Speeds. | | | | ■ Torque | | | | ■ Axis Deviation. | 108 | | | ■ Reali-Design and Reali-Design MM Software | 110 | | Section 5- | — Mounting, Installation and Maintenance of Reali-Slim Bearings | 112 | | | ■ Mounting Recommendations | | | | ■ Inspection and Installation Procedures. | | | | Lubrication and Maintenance. | 120 | | Section 6 | — Other Products | 122 | | | ■ Bearings for Demanding Applications. | | | | ■ KT Series Tapered Roller Bearings | | | Section 7 | Appendix and Sales Information | 126 | | Section / | ■ Terms and Definitions | | | | ■ Warranty Information and Legal Notices | | | | ■ Design Aids and Technical Literature | | | | ■ Distributors and Other Help. | | | | Request for Bearing Proposal Data Form | | | | Conversion Factors | 135 | ### Reali-Slim... For Compact, Lightweight Designs of the Future Many years ago, Kaydon engineers trying to help designers fit assemblies into smaller spaces had an idea: what if the bearing cross-section didn't increase as the bore size got bigger? This led them to develop new bearings with a cross-section that remained constant: Reali-Slim thin section bearings. Reali-Slim bearings produce larger ratios of diameter to radial section, which lead to space and weight savings of up to 85 percent. Such savings typically have a ripple effect, and have been known to eliminate enough material and/or components to reduce system cost by 40 percent. Despite their slim profile, Reali-Slim bearings have enough load capacity to handle a wide range of applications. A few appear here; for more, please download our Applications Guide at www.kaydonbearings.com/downloads.htm. ### **Industrial Machinery** - Machine tools - Robots - Optical scanning and imaging equipment - Food processing machinery - Packaging equipment #### Oil & Gas - Rotating drill rig equipment - Pipe inspection equipment - Iron roughnecks - Power swivels ### Aerospace & Defense - Target systems and tank sights - Navigation, target acquistion - Helicopter swash plates and gearboxes - Propulsion and control systems - Satellites - Mars Rover #### Medical - CT scanners - Laboratory diagnostic equipment - Surgical robotics - Surgical chairs, tables #### Radar ### **Semiconductor** Machinery - Pick and place
robotics - Lapping equipment - Wafer etching, scrubbing and polishing ### Renewable Energy - Solar panel altitude-azimuth mountings - Solar panel gearboxes Introduction ### Section 1 — An Introduction to Reali-Slim Thin Section Bearings | | Page
Numbe | |--------------------------------------|---------------| | Product Line Overview | 8 | | Examples of Design Efficiency | 9 | | Bearing Load Scenarios | 10 | | Product Availability Chart | 12 | | Specifications for Standard Bearings | 13 | The design and application information contained in this catalog is for illustration only. Responsibility for the application of the products contained in this catalog rests solely with the equipment designer or user. In spite of our best efforts, the material contained in this catalog may contain inaccuracies and typographical errors. ### **Product Line Overview** The inch family of Reali-Slim thin section bearings includes seven open series (Figure 1-2) and five sealed series (Figure 1-3), ranging in bore diameters from 1.000 inch to 40.000 inches. Series range from .187 x .187 inch to 1.000 x 1.000 inch in crosssection. Open bearings are available from stock in three configurations (Types A, C & X). Stock sealed bearings are available in Types C & X only. We can provide internal fit up, lubricants, separators and other features to meet the most demanding specifications. To obtain corrosion resistance consider using the Kaydon stainless steel Reali-Slim or Endura-Slim® series of bearings. Endurakote plating provides corrosion protection equal to or better than a full AISI 440C stainless steel bearing and can be supplied with very quick delivery. Additional product line variants include Reali-Slim MM metric series bearings (Figure 1-4), Ultra-Slim bearings (Figure 1-1), Reali-Slim TT series turntable bearings, BB metric ball bearings (all found in Section 2), Bearings for Demanding Applications, and KT thin section taper bearings (Section 6). Within these families, you can generally choose between open bearings for applications where bearings will not be exposed to damaging particulates and sealed bearings for applications where bearings need to be kept clean and well-lubricated. To support various load scenarios, Reali-Slim bearings are available in three basic types: radial contact (Type C), angular contact (Type A), and four-point contact (Type X)—see pages 10 and 11 for explanations of each type—and in a variety of sizes, or series (e.g., KA, KB, KC, etc.). Reali-Slim bearings are available with various separator options to space the rolling elements uniformly and prevent contact between them. Separator types available include: continuous ring "snap-over pocket", continuous ring circular pocket, formed wire, toroid, PTFE spacers, and spacer ball separators. See Section 4 for complete details. ### **Specification Control** In today's world, product traceability is extremely important. To satisfy these requirements, requesting a "specification control drawing" for a Reali-Slim bearing is a valuable option to consider. A specification control drawing provides the user a concise description of the important bearing features and parameters for a specific bearing. A specification control drawing request will generate a unique part number for the standard Reali-Slim bearing, including the commercially available options you have selected. This provides the customer quick and easy identification of product in the field as well as a concise receiving and inspection document for the factory. ### **Reali-Slim Bearings Improve Design Efficiency** In Reali-Slim bearings, each series is based on a single crosssection which remains constant as the bore diameter is increased. This is in sharp contrast to standard bearings in which the cross-section increases as the bore diameter increases. The constant cross-section of a Reali-Slim bearing is of particular value when designing a product which will be manufactured in various sizes based on shaft diameter and power requirements (Figure 1-5). By using the same series of Reali-Slim bearings throughout a product line, the designer can standardize on common components. For all diameters of this rotary table your bearing envelope stays the same. ### Figure 1-1, **Ultra-Slim Bearings** **Ultra-Slim** 2.5mm x 3mm ### Figure 1-2, Inch Bearings, Open 3/16" **X** 3/16" **Series AA** 1/4" X 1/4" 5/16" **X** 5/16" $^{3}/_{8}$ " \mathbf{X} $^{3}/_{8}$ " $\frac{1}{2}$ **X** $\frac{1}{2}$ **Series F** $^{3}/_{4}$ " \times $^{3}/_{4}$ " Series G 1" x 1" ### **Product Line Overview (continued)** Figure 1-5 ### **Reali-Slim Bearings Make a More Compact Design** Additional advantages in application design made possible by Reali-Slim bearings can be seen by referring to Figures 1-6, 1-7, and 1-8. A large bore, small cross-section Reali-Slim bearing permits the use of a large diameter hollow shaft (Figure 1-7) in place of a smaller diameter solid shaft (Figure 1-6), king-post design. Components such as air and hydraulic lines or electrical wiring and slip rings can then be accommodated within the hollow shaft, resulting in a neater, more efficient design. In many applications, a single four-point contact Reali-Slim bearing (Figure 1-8) can replace two bearings (Figures 1-6 and 1-7) compacting the design and simplifying the bearing mounting. Besides the obvious cost savings of eliminating one bearing, this arrangement also creates space and saves weight. The use of Reali-Slim bearings also provides a stiffer structure by using large diameter hollow tubes to replace solid shafts and by supporting the rotating structure (table) at the periphery. Figure 1-6 Figure 1-7 Figure 1-8 Figure 1-3, Inch Bearings, Sealed **Series JHA** 3/₁₆" **X** ¹/₄" 1/4" **X** 1/4" ⁵/₁₆" **X** ⁵/₁₆" Series JG 1" x 1" Figure 1-4, Metric Bearings **Sealed** 8mm x 8mm 8mm x 8mm Open 13mm x 13mm Open 20mm x 20mm ### Reali-Slim Bearing Types Support All Load Scenarios ### **Radial and Axial (Thrust) Loads** Bearings support a shaft or housing to permit their free motion about an axis of rotation. Load can be applied to bearings in either of two basic directions (Figure 1-9). Radial loads act at right angles to the shaft (bearing's axis of rotation). Axial (thrust) acts parallel to the axis of rotation. When these loads are offset from either the bearing axis (distance St) or radial plane (distance Sr), a resulting moment load (M) will be created. Reali-Slim bearings are available in a variety of types to handle radial loads, axial loads and moment loads. ### Figure 1-9 The resultant moment load (M) equation: $M = (\pm T) (S_p) + (\pm R) (S_p)$ ### **Types of Reali-Slim Bearings** Reali-Slim bearings are available in three basic configurations: radial (Type C), angular contact (Type A), and four-point contact (Type X). | Reali-Slim Bearing Types | |--------------------------| | A = angular | | C = radial | | X = four-point | By using these three types, the customer has a wider choice of mounting arrangements to meet load, stiffness and accuracy requirements in the most efficient manner. ### Radial Contact Bearing (Type C) The Type C Radial Contact Bearing (Figure 1-10) is a single row radial ball bearing of conventional design. It is a Conrad-type assembly, which means that it is assembled by eccentric displacement of the inner race within the outer race which permits insertion of about half of a full complement of balls. ### Reali-Slim Type C ### Figure 1-10 Although the Type C bearing is designed primarily for radial load application, it can be configured to accept some axial (thrust) load in either direction. But, if thrust is a concern, a set of angular contact bearings should be considered for the specific application. Introduction ### **Reali-Slim Bearing Types Support All Load Scenarios (continued)** ### **Angular Contact Bearing (Type A)** The Type A bearing is also a conventional design. It features a circular pocket separator and a 30° contact angle (see Figure 1-11) along with approximately 67% of a full complement of balls. The chief benefit of the Type A bearing is that it provides greater thrust capacity than a Type C or Type X bearing. Because of its counterbored outer race, a Type A bearing has unidirectional thrust capacity. Thus, this bearing should be mounted opposed to another bearing to establish and maintain the contact angle, and to support reversing thrust loads. ### **Reali-Slim Type A** ### Figure 1-11 ### Four-Point Contact Bearing (Type X) Standard bearing lines are most often designed to handle either radial or axial load conditions. The unique feature of the Reali-Slim Type X four-point contact bearing line (see Figure 1-12) is that the gothic arch geometry of the inner and outer races enables a single bearing to carry three types of loading (radial, axial and moment) simultaneously. This makes it the bearing of choice for many applications since a single four-point contact bearing can often replace two bearings, providing a simplified design. Type X bearings may also be furnished with an internal diametral preload for those applications requiring greater stiffness or zero free play. This is accomplished by using balls that are larger than the space provided between the raceways. The balls and raceways, therefore, have some elastic deformation in the absence of an external load. ### **Reali-Slim Type X** ### Figure 1-12 NOTE: Kaydon does not recommend the use of two Type X bearings on a common shaft, as it could result in objectionable friction torque. ### General Information and Availability Chart **Standard Reali-Slim Bearings**—are those listed in the Series Data Tables. They are manufactured to Kaydon Precision Class 1 and the specifications on <u>page 13</u>. New sizes are added to stock periodically and updated on our website. Be sure to visit www.kaydonbearings.com for latest information. ### **Options** **Reali-Slim Bearings**—can be optimized for your special requirements.
Standard commercial options include: changes in diametral clearance, preloading, lubricants, packaging, etching of high points, tagging bearings with actual dimensions as requested, separators, duplexing, data sheets, acceptance testing, etc. **Reali-Slim Bearings**—can be ordered with non-standard materials, sizes, tolerances, specifications, and features as well as custom packaging and lubrication options. We also have ISO Class 7 facilities for applications requiring cleanroom assembly. We will be pleased to quote on your requirements. **Order Reali-Slim Bearings**—by bearing numbers shown in Series Data Tables. **Assistance**—in bearing selection will be furnished by our regional sales managers or the Kaydon Engineering Department upon request. **Changes**—Due to Kaydon's continuing program of product improvement, we reserve the right to change specifications and other information included in this catalog without notice. ### Figure 1-13 The following table shows the availability of AISI 52100 standard Reali-Slim bearings. For the availability of Reali-Slim MM bearings, please see page 72. For stainless steel bearings, please see Section 2. Many bore diameters are available from stock; call Kaydon for details. ## Specifications for Standard Reali-Slim Bearings | ITEM | DESCRIPTION | REFERENCE
SPECIFICATION | |-----------------------------|---|---| | | MATERIAL ANALYSIS | JI ECHICATION | | RACES & BALLS | SAE-AISI 52100 Type Steel
AISI 440C Stainless Steel | ASTM A-295
AMS-5630 | | SEPARATORS
C, X BEARINGS | P Type—Brass or Non-metallic composite
L Type—Nylon, Fiberglass Reinforced | ASTM B-36 | | A BEARINGS | R Type—Brass or Non-metallic composite
G Type—Nylon, Fiberglass Reinforced | ASTM B-36 | | SEALS | Nitrile Rubber | | | | HEAT TREATMENT | | | RACES AND BALLS | Through hardened and dimensionally stabilized for use from -65° F to $+250^{\circ}$ F (-54° C to $+121^{\circ}$ C) | | | | PRECISION | | | RACE DIMENSIONS | Kaydon Precision Class 1 | ABMA ABEC-1F or better,
per ABMA Standard 26.2 | | RACERUNOUTS | Kaydon Precision Class 1 | ABMA ABEC-1F or better,
per ABMA Standard 26.2 | | BALLS | ABMA Grade 10 | ANSI/ABMA/ISO 3290 | | | DIAMETRAL CLEARANCE AND CONTACT ANGLE | | | TYPECBEARING | Sufficient diametral clearance to provide small amount of running clearance after installation with recommended fits. | | | TYPE X BEARING | Gothic Arch Form for two 30° contact angles under light radial gaging load. Sufficient diametral clearance to provide clearance after installation with recommended fits. | | | TYPE A BEARING | Diametral clearance for 30° contact angle in single unmounted bearing under light axial gaging load. Wide range of preload or running clearance for matched sets. | | | | SEPARATOR DESIGN | | | P<YPESC,X
BEARINGS | Circular Ring, Snapped Over Balls for Retention | | | R & G TYPES A
BEARINGS | Circular Ring, Circular Pockets, Self Retained | | | | OTHER | | | QUALITY CONTROL | Kaydon Quality Control procedures have been approved by major aerospace industries and agencies of the U.S. Government | ISO 9001, AS 9100 | | IDENTIFICATION | Marked on Bearing O.D.: CAGE Code, "Kaydon"®, Part Number and Date Code | MIL-STD-130 | | CLEANING | Multiple cycle immersion and agitation in solvents and/or aqueous cleaners | | | PRESERVATIVE | Preservative Oil | | | PACKAGING | Typically, smaller bearings are heat-sealed in a plastic bag and boxed; larger bearings are "tire-wrapped." | | | | | | ### Section 2 — Selection Tables for Standard Reali-Slim Bearings | | Numbe | |---|-------| | Open Reali-Slim Bearings Inch Series, AISI 52100 – Types A, C, X | 15 | | Sealed Reali-Slim Bearings, AISI 52100 – Types C, X | 27 | | ■ Precision Tolerances and Recommended Fits for Reali-Slim Bearings | 35 | | ■ Endurakote - Plated Reali-Slim Bearings | 40 | | Precision Tolerances and Recommended Fits for Reali-Slim Bearings with Endurakote Plating | 54 | | Stainless Steel Reali-Slim Bearings | 59 | | ■ Stainless Steel Open Reali-Slim Bearings – Types A, C, X | 60 | | Reali-Slim MM Metric Series Bearings – Types A, C, X | 72 | | Precision Tolerances & Recommended Fits for Reali-Slim MM Metric Series Bearings | 79 | | ■ Metric Series Ball Bearings (BB Series) | 80 | | ■ Ultra-Slim Thin Section Bearings – Types A, C, X | 83 | | Precision Tolerances & Recommended Fits for Ultra-Slim Bearings | 85 | | Reali-Slim TT Series Small-scale, Thin Section Turntable Bearings | 86 | ### Open Reali-Slim Bearing Selections Type A – ANGULAR CONTACT A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snap-over assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. If preferred, matched sets are available. Kaydon also offers matched spacers for applications requiring extra precision. Kaydon can provide this service direct from the factory. | | KAA Series | | | | | | | | | | | | | | | |-------------------|-------------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|---------|--------|-------------------|--|--|--|--| | KANDON | | Dimer | sions in l | nches | | | Capaci | ties in Po | unds① | | | | | | | | | KAYDON Size | | Land Diameters | | | | Dynamic | | Static2 | | Approx.
Wt. in | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | | | | KAA10AG0 | 1.000 | 1.375 | 1.140 | 1.235 | 1.274 | 194 | 590 | 450 | 340 | 970 | .025 | | | | | | KAA15AG0 | 1.500 | 1.875 | 1.640 | 1.735 | 1.774 | 238 | 681 | 560 | 480 | 1,380 | .038 | | | | | | KAA17AG0 | 1.750 | 2.125 | 1.890 | 1.985 | 2.024 | 251 | 697 | 600 | 530 | 1,520 | .045 | | | | | 4 F = .015Bearing corners are normally chamfered | MANDON | | Dime | nsions in | Inches | | | Capaci | ties in Po | unds① | | Approx. | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|---------------------|----------------|-------------------------------| | KAYDON
Bearing | S | ize | La | nd Diame | ters | Dynamic | | | Sta | Static ₂ | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | Wt. in
Ibs. | | | KA020AR0 | 2.000 | 2.500 | 2.186 | 2.314 | 2.369 | 405 | 1,065 | 960 | 790 | 2,280 | .10 | Circular pocket | | KA025AR0 | 2.500 | 3.000 | 2.686 | 2.814 | 2.869 | 459 | 1,150 | 1,100 | 960 | 2,780 | .12 | separator | | KA030AR0 | 3.000 | 3.500 | 3.186 | 3.314 | 3.367 | 507 | 1,225 | 1,230 | 1,140 | 3,290 | .14 | 1/8" balls | | KA035AR0 | 3.500 | 4.000 | 3.686 | 3.814 | 3.867 | 552 | 1,292 | 1,350 | 1,310 | 3,790 | .17 | .250 — | | KA040AR0 | 4.000 | 4.500 | 4.186 | 4.314 | 4.367 | 595 | 1,353 | 1,470 | 1,490 | 4,300 | .19 | .250 | | KA042AR0 | 4.250 | 4.750 | 4.436 | 4.564 | 4.615 | 616 | 1,382 | 1,530 | 1,580 | 4,550 | .20 | | | KA045AR0 | 4.500 | 5.000 | 4.686 | 4.814 | 4.865 | 637 | 1,410 | 1,580 | 1,660 | 4,810 | .21 | 2 | | KA047AR0 | 4.750 | 5.250 | 4.936 | 5.064 | 5.115 | 657 | 1,437 | 1,640 | 1,750 | 5,060 | .22 | | | KA050AR0 | 5.000 | 5.500 | 5.186 | 5.314 | 5.365 | 676 | 1,463 | 1,690 | 1,840 | 5,310 | .23 | L ₂ L ₃ | | KA055AR0 | 5.500 | 6.000 | 5.686 | 5.814 | 5.863 | 715 | 1,513 | 1,800 | 2,020 | 5,820 | .25 | L ₁ | | KA060AR0 | 6.000 | 6.500 | 6.186 | 6.314 | 6.363 | 752 | 1,561 | 1,900 | 2,190 | 6,320 | .28 | ④ F = .025 | | KA065AR0 | 6.500 | 7.000 | 6.686 | 6.814 | 6.861 | 788 | 1,605 | 2,000 | 2,370 | 6,830 | .30 | Bearing corners are | | KA070AR0 | 7.000 | 7.500 | 7.186 | 7.314 | 7.361 | 823 | 1,648 | 2,100 | 2,540 | 7,340 | .32 | normally chamfere | | KA075AR0 | 7.500 | 8.000 | 7.686 | 7.814 | 7.861 | 857 | 1,689 | 2,190 | 2,720 | 7,840 | .34 | | | KA080AR0 | 8.000 | 8.500 | 8.186 | 8.314 | 8.359 | 890 | 1,728 | 2,280 | 2,890 | 8,350 | .36 | | | KA090AR0 | 9.000 | 9.500 | 9.186 | 9.314 | 9.357 | 954 | 1,802 | 2,470 | 3,240 | 9,360 | .41 | | | KA100AR0 | 10.000 | 10.500 | 10.186 | 10.314 | 10.355 | 1,014 | 1,871 | 2,640 | 3,590 | 10,370 | .45 | | | KA110AR0 | 11.000 | 11.500 | 11.186 | 11.314 | 11.353 | 1,072 | 1,936 | 2,810 | 3,940 | 11,380 | .50 | | | KA120AR0 | 12.000 | 12.500 | 12.186 | 12.314 | 12.349 | 1,128 | 1,998 | 2,970 | 4,290 | 12,390 | .54 | | balls ' = .025corners are y chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values ² Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ④ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type A - Open Reali-Slim Bearings, ANGULAR CONTACT | | | | | | KB Ser | ies | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------
--------|--------|-------------------|---------------------------------------| | WAY 21 | | Dime | nsions in l | nches | | | Capaci | ties in Po | unds① | | | | | KAYDON | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | KB020AR0 | 2.000 | 2.625 | 2.231 | 2.393 | 2.464 | 601 | 1,520 | 1,380 | 1,090 | 3,150 | .15 | | | KB025AR0 | 2.500 | 3.125 | 2.731 | 2.893 | 2.964 | 675 | 1,650 | 1,590 | 1,340 | 3,860 | .19 | | | KB030AR0 | 3.000 | 3.625 | 3.231 | 3.393 | 3.462 | 734 | 1,737 | 1,750 | 1,550 | 4,470 | .22 | Circular pocket | | KB035AR0 | 3.500 | 4.125 | 3.731 | 3.893 | 3.962 | 801 | 1,840 | 1,930 | 1,790 | 5,180 | .27 | separator | | KB040AR0 | 4.000 | 4.625 | 4.231 | 4.393 | 4.460 | 865 | 1,934 | 2,100 | 2,040 | 5,890 | .30 | 5/32" balls | | KB042AR0 | 4.250 | 4.875 | 4.481 | 4.643 | 4.710 | 891 | 1,967 | 2,170 | 2,150 | 6,200 | .31 | .3125 | | KB045AR0 | 4.500 | 5.125 | 4.731 | 4.893 | 4.960 | 917 | 2,000 | 2,240 | 2,250 | 6,500 | .34 | F _ | | KB047AR0 | 4.750 | 5.375 | 4.981 | 5.143 | 5.210 | 951 | 2,051 | 2,340 | 2,390 | 6,910 | .35 | | | KB050AR0 | 5.000 | 5.625 | 5.231 | 5.393 | 5.460 | 976 | 2,081 | 2,410 | 2,500 | 7,210 | .37 | ▲ .3125 | | KB055AR0 | 5.500 | 6.125 | 5.731 | 5.893 | 5.958 | 1,033 | 2,158 | 2,560 | 2,740 | 7,920 | .40 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | KB060AR0 | 6.000 | 6.625 | 6.231 | 6.393 | 6.458 | 1,088 | 2,230 | 2,710 | 2,990 | 8,630 | .44 | L2 | | KB065AR0 | 6.500 | 7.125 | 6.731 | 6.893 | 6.958 | 1,132 | 2,281 | 2,840 | 3,200 | 9,240 | .47 | L ₁ L ₃ | | KB070AR0 | 7.000 | 7.625 | 7.231 | 7.393 | 7.456 | 1,184 | 2,347 | 2,980 | 3,450 | 9,960 | .50 | | | KB075AR0 | 7.500 | 8.125 | 7.731 | 7.893 | 7.955 | 1,235 | 2,409 | 3,120 | 3,700 | 10,670 | .54 | 4 F = .040
Bearing corners are | | KB080AR0 | 8.000 | 8.625 | 8.231 | 8.393 | 8.453 | 1,284 | 2,469 | 3,260 | 3,940 | 11,380 | .57 | normally chamfered | | KB090AR0 | 9.000 | 9.625 | 9.231 | 9.393 | 9.451 | 1,370 | 2,568 | 3,510 | 4,400 | 12,700 | .64 | , | | KB100AR0 | 10.000 | 10.625 | 10.231 | 10.393 | 10.449 | 1,461 | 2,673 | 3,760 | 4,890 | 14,120 | .71 | | | KB110AR0 | 11.000 | 11.625 | 11.231 | 11.393 | 11.447 | 1,540 | 2,760 | 4,000 | 5,350 | 15,440 | .78 | | | KB120AR0 | 12.000 | 12.625 | 12.231 | 12.393 | 12.445 | 1,623 | 2,853 | 4,240 | 5,840 | 16,860 | .85 | | | KB140AR0 | 14.000 | 14.625 | 14.231 | 14.393 | 14.439 | 1,767 | 3,005 | 4,670 | 6,760 | 19,500 | .98 | | | KB160AR0 | 16.000 | 16.625 | 16.231 | 16.393 | 16.433 | 1,907 | 3,154 | 5,100 | 7,710 | 22,250 | 1.12 | | | KB180AR0 | 18.000 | 18.625 | 18.231 | 18.393 | 18.425 | 2,038 | 3,292 | 5,510 | 8,660 | 24,990 | 1.26 | | | KB200AR0 | 20.000 | 20.625 | 20.231 | 20.393 | 20.416 | 2,162 | 3,421 | 5,900 | 9,610 | 27,730 | 1.40 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. - ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. - ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). - 4 "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 **Need Service Fast?** 1-800-514-3066 www.kaydonbearings.com ### Type A – Open Reali-Slim Bearings, ANGULAR CONTACT | | | | | | KC Ser | ies | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------------|------------------|----------------|--------|--------|-------------------|------| | KANDON | | Dimer | nsions in I | nches | | | | | | | | | KAYDON
Bearing | Si | ze | Land Diameters | | | Dynamic | | | Stat | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | KC040AR0 | 4.000 | 4.750 | 4.277 | 4.473 | 4.554 | 1,153 | 2,520 | 2,770 | 2,550 | 7,360 | .44 | | KC042AR0 | 4.250 | 5.000 | 4.527 | 4.723 | 4.804 | 1,194 | 2,580 | 2,880 | 2,710 | 7,820 | .46 | | KC045AR0 | 4.500 | 5.250 | 4.777 | 4.973 | 5.052 | 1,234 | 2,637 | 2,990 | 2,860 | 8,270 | .49 | | KC047AR0 | 4.750 | 5.500 | 5.027 | 5.223 | 5.302 | 1,274 | 2,693 | 3,100 | 3,020 | 8,720 | .51 | | KC050AR0 | 5.000 | 5.750 | 5.277 | 5.473 | 5.552 | 1,313 | 2,746 | 3,200 | 3,180 | 9,170 | .54 | | KC055AR0 | 5.500 | 6.250 | 5.777 | 5.973 | 6.052 | 1,374 | 2,820 | 3,370 | 3,440 | 9,920 | .58 | | KC060AR0 | 6.000 | 6.750 | 6.277 | 6.473 | 6.550 | 1,448 | 2,917 | 3,580 | 3,750 | 10,820 | .64 | | KC065AR0 | 6.500 | 7.250 | 6.777 | 6.973 | 7.050 | 1,519 | 3,009 | 3,770 | 4,060 | 11,720 | .68 | | KC070AR0 | 7.000 | 7.750 | 7.277 | 7.473 | 7.550 | 1,575 | 3,071 | 3,930 | 4,320 | 12,470 | .74 | | KC075AR0 | 7.500 | 8.250 | 7.777 | 7.973 | 8.048 | 1,642 | 3,156 | 4,120 | 4,630 | 13,380 | .78 | | KC080AR0 | 8.000 | 8.750 | 8.277 | 8.473 | 8.548 | 1,708 | 3,236 | 4,300 | 4,950 | 14,280 | .84 | | KC090AR0 | 9.000 | 9.750 | 9.277 | 9.473 | 9.546 | 1,822 | 3,366 | 4,630 | 5,520 | 15,930 | .98 | | KC100AR0 | 10.000 | 10.750 | 10.277 | 10.473 | 10.544 | 1,942 | 3,508 | 4,970 | 6,140 | 17,730 | 1.04 | | KC110AR0 | 11.000 | 11.750 | 11.277 | 11.473 | 11.542 | 2,047 | 3,621 | 5,280 | 6,720 | 19,390 | 1.14 | | KC120AR0 | 12.000 | 12.750 | 12.277 | 12.473 | 12.540 | 2,147 | 3,729 | 5,570 | 7,290 | 21,040 | 1.23 | | KC140AR0 | 14.000 | 14.750 | 14.277 | 14.473 | 14.535 | 2,347 | 3,946 | 6,170 | 8,490 | 24,500 | 1.43 | | KC160AR0 | 16.000 | 16.750 | 16.277 | 16.473 | 16.529 | 2,533 | 4,144 | 6,730 | 9,680 | 27,950 | 1.63 | | KC180AR0 | 18.000 | 18.750 | 18.277 | 18.473 | 18.523 | 2,707 | 4,326 | 7,280 | 10,880 | 31,410 | 1.83 | | KC200AR0 | 20.000 | 20.750 | 20.277 | 20.473 | 20.517 | 2,863 | 4,484 | 7,780 | 12,030 | 34,720 | 2.03 | | KC250AR0 | 25.000 | 25.750 | 25.277 | 25.473 | 25.500 | 3,233 | 4,863 | 9,010 | 14,900 | 43,280 | 2.52 | | KC300AR0 | 30.000 | 30.750 | 30.277 | 30.473 | 30.484 | 3,561 | 5,196 | 10,160 | 17,960 | 51,850 | 3.02 | #### Circular pocket separator 3/16" balls \P F = .040 Bearing corners are normally chamfered | KD Series | | | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|--------|-----------------------|------------------|----------------|--------|--------|------------------|------|--|--|--| | KAYDON | | Dime | nsions in l | nches | | | Annroy | | | | | | | | | RAYDON
Bearing | Si | ize | Land Diameters | | | Dynamic | | | Sta | Approx.
Wt.in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial3 | Thrust | Radial | Thrust | lbs. | | | | | KD040AR0 | 4.000 | 5.000 | 4.370 | 4.630 | 4.741 | 1,819 | 3,708 | 4,260 | 3,550 | 10,260 | .80 | | | | | KD042AR0 | 4.250 | 5.250 | 4.620 | 4.880 | 4.991 | 1,876 | 3,786 | 4,420 | 3,750 | 10,830 | .84 | | | | | KD045AR0 | 4.500 | 5.500 | 4.870 | 5.130 | 5.241 | 1,931 | 3,861 | 4,570 | 3,950 | 11,400 | .88 | | | | | KD047AR0 | 4.750 | 5.750 | 5.120 | 5.380 | 5.490 | 1,986 | 3,934 | 4,720 | 4,150 | 11,970 | .93 | | | | | KD050AR0 | 5.000 | 6.000 | 5.370 | 5.630 | 5.740 | 2,040 | 4,004 | 4,870 | 4,340 | 12,540 | .98 | | | | | KD055AR0 | 5.500 | 6.500 | 5.870 | 6.130 | 6.238 | 2,145 | 4,138 | 5,160 | 4,740 | 13,680 | 1.06 | | | | | KD060AR0 | 6.000 | 7.000 | 6.370 | 6.630 | 6.738 | 2,247 | 4,264 | 5,440 | 5,130 | 14,820 | 1.15 | | | | | KD065AR0 | 6.500 | 7.500 | 6.870 | 7.130 | 7.236 | 2,346 | 4,384 | 5,720 | 5,530 | 15,960 | 1.24 | | | | | KD070AR0 | 7.000 | 8.000 | 7.370 | 7.630 | 7.736 | 2,442 | 4,499 | 5,990 | 5,920 | 17,100 | 1.33 | | | | | KD075AR0 | 7.500 | 8.500 | 7.870 | 8.130 | 8.236 | 2,536 | 4,608 | 6,250 | 6,320 | 18,240 | 1.42 | | | | | KD080AR0 | 8.000 | 9.000 | 8.370 | 8.630 | 8.734 | 2,627 | 4,713 | 6,510 | 6,710 | 19,380 | 1.52 | | | | | KD090AR0 | 9.000 | 10.000 | 9.370 | 9.630 | 9.732 | 2,803 | 4,911 | 7,010 | 7,500 | 21,660 | 1.69 | | | | | KD100AR0 | 10.000 | 11.000 | 10.370 | 10.630 | 10.732 | 2,972 | 5,096 | 7,500 | 8,290 | 23,940 | 1.87 | | | | | KD110AR0 | 11.000 | 12.000 | 11.370 | 11.630 | 11.730 | 3,133 | 5,270 | 7,960 | 9,080 | 26,220 | 2.05 | | | | | KD120AR0 | 12.000 | 13.000 | 12.370 | 12.630 | 12.728 | 3,288 | 5,434 | 8,420 | 9,870 | 28,500 | 2.23 | | | | | KD140AR0 | 14.000 | 15.000 | 14.370 | 14.630 | 14.724 | 3,582 | 5,739 | 9,290 | 11,450 | 33,060 | 2.57 | | | | | KD160AR0 | 16.000 | 17.000 | 16.370 | 16.630 | 16.718 | 3,856 | 6,018 | 10,130 | 13,030 | 37,620 | 2.93 | | | | | KD180AR0 | 18.000 | 19.000 | 18.370 | 18.630 | 18.712 | 4,113 | 6,276 | 10,930 | 14,610 | 42,180 | 3.29 | | | | | KD200AR0 | 20.000 | 21.000 | 20.370 | 20.630 | 20.705 | 4,356 | 6,517 | 11,710 | 16,190 | 46,740 | 3.65 | | | | | KD210AR0 | 21.000 | 22.000 | 21.370 | 21.630 | 21.700 | 4,472 | 6,632 | 12,086 | 16,981 | 49,020 | 3.83 | | | | | KD250AR0 | 25.000 | 26.000 | 25.370 | 25.630 | 25.688 | 4,908 | 7,060 | 13,540 | 20,140 | 58,140 | 4.54 | | | | | KD300AR0 | 30.000 | 31.000 | 30.370 | 30.630 | 30.672 | 5,397 | 7,538 | 15,260 | 24,090 | 69,540 | 5.44 | | | | # Circular pocket separator 1/4" balls ④ F = .060 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]mathfrak{D} \text{ Static capacities are non-brinell limits based on rigid support from the shaft and housing. } \\$ ³ ISO Radial ratings
are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type A - Open Reali-Slim Bearings, ANGULAR CONTACT | | KF Series | | | | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|----------|-----------------------|------------------|-----------------------|--------|--------|---------|----------------|--|--|--|--| | | | Dime | nsions in l | Inches | | | Capacities in Pounds① | | | | | | | | | | KAYDON | Si | ze | Lai | nd Diame | ters | | Dynamic | | Sta | tic② | Approx. | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | Wt. in
Ibs. | | | | | | KF040AR0 | 4.000 | 5.500 | 4.555 | 4.945 | 5.115 | 3,736 | 6,809 | 8,420 | 6,350 | 18,340 | 1.92 | | | | | | KF042AR0 | 4.250 | 5.750 | 4.805 | 5.195 | 5.365 | 3,805 | 6,891 | 8,630 | 6,600 | 19,050 | 2.04 | | | | | | KF045AR0 | 4.500 | 6.000 | 5.055 | 5.445 | 5.615 | 3,966 | 7,134 | 9,050 | 7,090 | 20,460 | 2.14 | | | | | | KF047AR0 | 4.750 | 6.250 | 5.305 | 5.695 | 5.865 | 4,034 | 7,207 | 9,260 | 7,330 | 21,160 | 2.26 | | | | | | KF050AR0 | 5.000 | 6.500 | 5.555 | 5.945 | 6.115 | 4,101 | 7,279 | 9,460 | 7,570 | 21,870 | 2.37 | | | | | | KF055AR0 | 5.500 | 7.000 | 6.055 | 6.445 | 6.613 | 4,319 | 7,566 | 10,060 | 8,310 | 23,980 | 2.59 | | | | | | KF060AR0 | 6.000 | 7.500 | 6.555 | 6.945 | 7.113 | 4,530 | 7,835 | 10,650 | 9,040 | 26,100 | 2.72 | | | | | | KF065AR0 | 6.500 | 8.000 | 7.055 | 7.445 | 7.613 | 4,734 | 8,088 | 11,220 | 9,770 | 28,220 | 2.94 | | | | | | KF070AR0 | 7.000 | 8.500 | 7.555 | 7.945 | 8.113 | 4,932 | 8,329 | 11,770 | 10,510 | 30,330 | 3.16 | | | | | | KF075AR0 | 7.500 | 9.000 | 8.055 | 8.445 | 8.610 | 5,052 | 8,432 | 12,130 | 11,000 | 31,740 | 3.39 | | | | | | KF080AR0 | 8.000 | 9.500 | 8.555 | 8.945 | 9.110 | 5,242 | 8,655 | 12,670 | 11,730 | 33,860 | 3.61 | | | | | | KF090AR0 | 9.000 | 10.500 | 9.555 | 9.945 | 10.108 | 5,608 | 9,073 | 13,700 | 13,190 | 38,090 | 3.95 | | | | | | KF100AR0 | 10.000 | 11.500 | 10.555 | 10.945 | 11.106 | 5,890 | 9,353 | 14,530 | 14,420 | 41,620 | 4.40 | | | | | | KF110AR0 | 11.000 | 12.500 | 11.555 | 11.945 | 12.106 | 6,227 | 9,720 | 15,500 | 15,880 | 45,850 | 4.75 | | | | | | KF120AR0 | 12.000 | 13.500 | 12.555 | 12.945 | 13.104 | 6,487 | 9,969 | 16,290 | 17,100 | 49,380 | 5.20 | | | | | | KF140AR0 | 14.000 | 15.500 | 14.555 | 14.945 | 15.102 | 7,043 | 10,523 | 17,950 | 19,790 | 57,140 | 5.76 | | | | | | KF160AR0 | 16.000 | 17.500 | 16.555 | 16.945 | 17.098 | 7,563 | 11,030 | 19,540 | 22,480 | 64,890 | 6.78 | | | | | | KF180AR0 | 18.000 | 19.500 | 18.555 | 18.945 | 19.096 | 8,103 | 11,573 | 21,210 | 25,410 | 73,360 | 7.67 | | | | | | KF200AR0 | 20.000 | 21.500 | 20.555 | 20.945 | 21.092 | 8,562 | 12,006 | 22,680 | 28,100 | 81,120 | 8.47 | | | | | | KF250AR0 | 25.000 | 26.500 | 25.555 | 25.945 | 26.085 | 9,585 | 12,954 | 26,100 | 34,700 | 100,200 | 10.50 | | | | | | KF300AR0 | 30.000 | 31.500 | 30.555 | 30.945 | 31.075 | 10,533 | 13,848 | 29,430 | 41,540 | 119,900 | 12.50 | | | | | | KF350AR0 | 35.000 | 36.500 | 35.555 | 35.945 | 36.064 | 11,382 | 14,653 | 32,580 | 48,380 | 139,700 | 14.60 | | | | | | KF400AR0 | 40.000 | 41.500 | 40.555 | 40.945 | 41.054 | 12,147 | 15,387 | 35,580 | 55,220 | 159,400 | 16.60 | | | | | 4F = .080 Bearing corners are normally chamfered | KG Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|---------|-------------------|--| | WAVE ON | | Dime | nsions in l | Inches | | | Capaci | ties in Po | unds① | | | | | KAYDON
Bearing | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | KG040AR0 | 4.000 | 6.000 | 4.742 | 5.258 | 5.491 | 6,281 | 10,167 | 13,630 | 9,480 | 27,360 | 3.61 | | | KG042AR0 | 4.250 | 6.250 | 4.992 | 5.508 | 5.741 | 6,438 | 10,384 | 14,090 | 9,950 | 28,730 | 3.83 | | | KG045AR0 | 4.500 | 6.500 | 5.242 | 5.758 | 5.989 | 6,562 | 10,592 | 14,530 | 10,430 | 30,100 | 3.95 | | | KG047AR0 | 4.750 | 6.750 | 5.492 | 6.008 | 6.239 | 6,745 | 10,792 | 14,970 | 10,900 | 31,460 | 4.17 | | | KG050AR0 | 5.000 | 7.000 | 5.742 | 6.258 | 6.489 | 6,897 | 10,985 | 15,400 | 11,370 | 32,830 | 4.42 | | | KG055AR0 | 5.500 | 7.500 | 6.242 | 6.758 | 6.989 | 7,192 | 11,352 | 16,240 | 12,320 | 35,570 | 4.73 | | | KG060AR0 | 6.000 | 8.000 | 6.742 | 7.258 | 7.489 | 7,480 | 11,697 | 17,060 | 13,270 | 38,300 | 5.07 | | | KG065AR0 | 6.500 | 8.500 | 7.242 | 7.758 | 7.987 | 7,761 | 12,023 | 17,870 | 14,220 | 41,040 | 5.41 | | | KG070AR0 | 7.000 | 9.000 | 7.742 | 8.258 | 8.487 | 8,035 | 12,333 | 18,650 | 15,160 | 43,780 | 5.87 | | | KG075AR0 | 7.500 | 9.500 | 8.242 | 8.758 | 8.987 | 8,303 | 12,629 | 19,420 | 16,110 | 46,510 | 6.20 | | | KG080AR0 | 8.000 | 10.000 | 8.742 | 9.258 | 9.485 | 8,566 | 12,912 | 20,180 | 17,060 | 49,250 | 6.54 | | | KG090AR0 | 9.000 | 11.000 | 9.742 | 10.258 | 10.485 | 9,073 | 13,446 | 21,640 | 18,960 | 54,720 | 7.22 | | | KG100AR0 | 10.000 | 12.000 | 10.742 | 11.258 | 11.483 | 9,561 | 13,942 | 23,060 | 20,850 | 60,190 | 8.00 | | | KG110AR0 | 11.000 | 13.000 | 11.742 | 12.258 | 12.481 | 10,027 | 14,409 | 24,440 | 22,750 | 65,660 | 8.68 | | | KG120AR0 | 12.000 | 14.000 | 12.742 | 13.258 | 13.481 | 10,481 | 14,849 | 25,780 | 24,640 | 71,140 | 9.47 | | | KG140AR0 | 14.000 | 16.000 | 14.742 | 15.258 | 15.478 | 11,338 | 15,665 | 28,360 | 28,430 | 82,080 | 10.90 | | | KG160AR0 | 16.000 | 18.000 | 16.742 | 17.258 | 17.474 | 12,142 | 16,411 | 30,830 | 32,220 | 93,020 | 12.40 | | | KG180AR0 | 18.000 | 20.000 | 18.742 | 19.258 | 19.472 | 12,898 | 17,101 | 33,200 | 36,020 | 104,000 | 13.80 | | | KG200AR0 | 20.000 | 22.000 | 20.742 | 21.258 | 21.468 | 13,612 | 17,745 | 35,490 | 39,810 | 114,900 | 15.20 | | | KG220AR0 | 22.000 | 24.000 | 22.742 | 23.258 | 23.468 | 14,290 | 18,351 | 37,712 | 43,598 | 125,856 | 16.63 | | | KG250AR0 | 25.000 | 27.000 | 25.742 | 26.258 | 26.461 | 15,239 | 19,198 | 40,920 | 49,280 | 142,300 | 18.80 | | | KG300AR0 | 30.000 | 32.000 | 30.742 | 31.258 | 31.451 | 16,687 | 20,480 | 46,020 | 58,760 | 169,600 | 22.50 | | | KG350AR0 | 35.000 | 37.000 | 35.742 | 36.258 | 36.440 | 17,982 | 21,636 | 50,840 | 68,240 | 197,000 | 26.20 | | | KG400AR0 | 40.000 | 42.000 | 40.742 | 41.258 | 41.430 | 19,153 | 22,693 | 55,440 | 77,720 | 224,400 | 29.80 | | $\P = .080$ Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ④ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Open Reali-Slim Bearing Selections Type C – RADIAL CONTACT A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction – often used in conjunction with another bearing. | KAA Series | | | | | | | | | | | | | |-------------------|-------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pour | nds① | | | | | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | KAA10CL0 | 1.000 | 1.375 | 1.140 | 1.235 | 188 | 558 | 290 | .026 | | | | | | KAA15CL0 | 1.500 | 1.875 | 1.640 | 1.735 | 225 | 632 | 400 | .039 | | | | | | KAA17CL0 | 1.750 | 2.125 | 1.890 | 1.985 | 242 | 663 | 460 | .045 | | | | | | KA Series | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|------------------|----------------|---------|-------------------|--|--|--| | KANDON | | Dimensior | s in Inches | | Сара | cities in Pou | nds① | | | | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | KA020CP0 | 2.000 | 2.500 | 2.186 | 2.314 | 393 | 1,012 | 680 | .10 | | | | | KA025CP0 | 2.500 | 3.000 | 2.686 | 2.814 | 442 | 1,094 | 830 | .13 | | | | | KA030CP0 | 3.000 | 3.500 | 3.186 | 3.314 | 487 | 1,166 | 990 | .15 | | | | | KA035CP0 | 3.500 | 4.000 | 3.686 | 3.814 | 530 | 1,230 | 1,140 | .18 | | | | | KA040CP0 | 4.000 | 4.500 | 4.186 | 4.314 | 571 | 1,289 | 1,290 | .19 | | | | | KA042CP0 | 4.250 | 4.750 | 4.436 | 4.564 | 591 | 1,317 | 1,370 | .20 | | | | | KA045CP0 | 4.500 | 5.000 | 4.686 | 4.814 | 610 | 1,344 | 1,440 | .22 | | | | | KA047CP0 | 4.750 | 5.250 | 4.936 | 5.064 | 629 | 1,369 | 1,520 | .23 | | | | | KA050CP0 | 5.000 | 5.500 | 5.186 | 5.314 | 648 | 1,394 | 1,590 | .24 | | | | | KA055CP0 | 5.500 | 6.000 | 5.686 | 5.814 | 685 | 1,442 | 1,750 | .25 | | | | | KA060CP0 | 6.000 | 6.500 | 6.186 | 6.314 | 720 | 1,487 | 1,900 | .28 | | | | | KA065CP0 | 6.500 | 7.000 | 6.686 | 6.814 | 754 | 1,530 | 2,050 | .30 | | | | | KA070CP0 | 7.000 | 7.500 | 7.186 | 7.314 | 787 | 1,571 | 2,200 | .31 | | | | | KA075CP0 | 7.500 | 8.000 | 7.686 | 7.814 | 820 | 1,610 | 2,350 | .34 | | | | | KA080CP0 | 8.000 | 8.500 | 8.186 | 8.314 | 851 | 1,647 | 2,500 | .38 | | | | | KA090CP0 | 9.000 | 9.500 | 9.186 |
9.314 | 912 | 1,718 | 2,810 | .44 | | | | | KA100CP0 | 10.000 | 10.500 | 10.186 | 10.314 | 969 | 1,784 | 3,110 | .50 | | | | | KA110CP0 | 11.000 | 11.500 | 11.186 | 11.314 | 1,025 | 1,846 | 3,410 | .52 | | | | | KA120CP0 | 12.000 | 12.500 | 12.186 | 12.314 | 1,078 | 1,904 | 3,720 | .56 | | | | ④ F = .025 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. Static capacities are non-brinell limits based on rigid support from the shaft and housing. ⁽⁹⁾ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). $[\]textcircled{4}\,$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type C - Open Reali-Slim Bearings, RADIAL CONTACT | | | | K | B Series | | | | | |-------------------|--------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------| | | | Dimension | s in Inches | | Сара | cities in Pour | nds① | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyna | amic | Static@ | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | KB020CP0 | 2.000 | 2.625 | 2.231 | 2.393 | 577 | 1,431 | 930 | .16 | | KB025CP0 | 2.500 | 3.125 | 2.731 | 2.893 | 644 | 1,549 | 1,140 | .20 | | KB030CP0 | 3.000 | 3.625 | 3.231 | 3.393 | 707 | 1,651 | 1,340 | .24 | | KB035CP0 | 3.500 | 4.125 | 3.731 | 3.893 | 767 | 1,743 | 1,540 | .27 | | KB040CP0 | 4.000 | 4.625 | 4.231 | 4.393 | 825 | 1,827 | 1,750 | .30 | | KB042CP0 | 4.250 | 4.875 | 4.481 | 4.643 | 846 | 1,853 | 1,830 | .31 | | KB045CP0 | 4.500 | 5.125 | 4.731 | 4.893 | 880 | 1,904 | 1,950 | .33 | | KB047CP0 | 4.750 | 5.375 | 4.981 | 5.143 | 901 | 1,928 | 2,030 | .34 | | KB050CP0 | 5.000 | 5.625 | 5.231 | 5.393 | 933 | 1,976 | 2,150 | .38 | | KB055CP0 | 5.500 | 6.125 | 5.731 | 5.893 | 984 | 2,044 | 2,360 | .41 | | KB060CP0 | 6.000 | 6.625 | 6.231 | 6.393 | 1,034 | 2,108 | 2,560 | .44 | | KB065CP0 | 6.500 | 7.125 | 6.731 | 6.893 | 1,082 | 2,168 | 2,760 | .47 | | KB070CP0 | 7.000 | 7.625 | 7.231 | 7.393 | 1,129 | 2,226 | 2,970 | .50 | | KB075CP0 | 7.500 | 8.125 | 7.731 | 7.893 | 1,175 | 2,281 | 3,170 | .53 | | KB080CP0 | 8.000 | 8.625 | 8.231 | 8.393 | 1,219 | 2,334 | 3,370 | .57 | | KB090CP0 | 9.000 | 9.625 | 9.231 | 9.393 | 1,304 | 2,434 | 3,780 | .66 | | KB100CP0 | 10.000 | 10.625 | 10.231 | 10.393 | 1,386 | 2,527 | 4,190 | .73 | | KB110CP0 | 11.000 | 11.625 | 11.231 | 11.393 | 1,464 | 2,615 | 4,590 | .75 | | KB120CP0 | 12.000 | 12.625 | 12.231 | 12.393 | 1,539 | 2,698 | 5,000 | .83 | | KB140CP0 | 14.000 | 14.625 | 14.231 | 14.393 | 1,680 | 2,851 | 5,810 | 1.05 | | KB160CP0 | 16.000 | 16.625 | 16.231 | 16.393 | 1,812 | 2,991 | 6,620 | 1.20 | | KB180CP0 | 18.000 | 18.625 | 18.231 | 18.393 | 1,936 | 3,121 | 7,440 | 1.35 | | KB200CP0 | 20.000 | 20.625 | 20.231 | 20.393 | 2,053 | 3,242 | 8,250 | 1.50 | - $\mathfrak{D} \text{ Static capacities are non-brinell limits based on rigid support from the shaft and housing. } \\$ - (9) ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). - ${ \mathfrak A}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 **Need Service Fast?** 1-800-514-3066 www.kaydonbearings.com ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ### Type C - Open Reali-Slim Bearings, RADIAL CONTACT | KC Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|---------|------------------|----------------|---------|----------------|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | KAYDON | S | ize | Land Di | ameters | Dyn | amic | Static2 | Approx. | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
lbs. | | | | | | KC040CP0 | 4.000 | 4.750 | 4.277 | 4.473 | 1,073 | 2,321 | 2,100 | .45 | | | | | | KC042CP0 | 4.250 | 5.000 | 4.527 | 4.723 | 1,108 | 2,370 | 2,220 | .47 | | | | | | KC045CP0 | 4.500 | 5.250 | 4.777 | 4.973 | 1,143 | 2,418 | 2,340 | .48 | | | | | | KC047CP0 | 4.750 | 5.500 | 5.027 | 5.223 | 1,176 | 2,464 | 2,460 | .50 | | | | | | KC050CP0 | 5.000 | 5.750 | 5.277 | 5.473 | 1,209 | 2,509 | 2,590 | .58 | | | | | | KC055CP0 | 5.500 | 6.250 | 5.777 | 5.973 | 1,274 | 2,594 | 2,830 | .59 | | | | | | KC060CP0 | 6.000 | 6.750 | 6.277 | 6.473 | 1,337 | 2,674 | 3,070 | .63 | | | | | | KC065CP0 | 6.500 | 7.250 | 6.777 | 6.973 | 1,397 | 2,751 | 3,310 | .68 | | | | | | KC070CP0 | 7.000 | 7.750 | 7.277 | 7.473 | 1,457 | 2,823 | 3,550 | .73 | | | | | | KC075CP0 | 7.500 | 8.250 | 7.777 | 7.973 | 1,514 | 2,893 | 3,790 | .78 | | | | | | KC080CP0 | 8.000 | 8.750 | 8.277 | 8.473 | 1,570 | 2,960 | 4,030 | .84 | | | | | | KC090CP0 | 9.000 | 9.750 | 9.277 | 9.473 | 1,678 | 3,085 | 4,510 | .94 | | | | | | KC100CP0 | 10.000 | 10.750 | 10.277 | 10.473 | 1,781 | 3,203 | 4,990 | 1.06 | | | | | | KC110CP0 | 11.000 | 11.750 | 11.277 | 11.473 | 1,879 | 3,313 | 5,470 | 1.16 | | | | | | KC120CP0 | 12.000 | 12.750 | 12.277 | 12.473 | 1,974 | 3,417 | 5,950 | 1.25 | | | | | | KC140CP0 | 14.000 | 14.750 | 14.277 | 14.473 | 2,154 | 3,611 | 6,910 | 1.52 | | | | | | KC160CP0 | 16.000 | 16.750 | 16.277 | 16.473 | 2,321 | 3,787 | 7,880 | 1.73 | | | | | | KC180CP0 | 18.000 | 18.750 | 18.277 | 18.473 | 2,478 | 3,951 | 8,840 | 1.94 | | | | | | KC200CP0 | 20.000 | 20.750 | 20.277 | 20.473 | 2,626 | 4,104 | 9,800 | 2.16 | | | | | | KC250CP0 | 25.000 | 25.750 | 25.277 | 25.473 | 2,962 | 4,447 | 12,200 | 2.69 | | | | | | KC300CP0 | 30.000 | 30.750 | 30.277 | 30.473 | 3,260 | 4,750 | 14,610 | 3.21 | | | | | | | 30.000 | 30.730 | 30.277 | 30.173 | 3,200 | .,, 50 | . 1,0 . 0 | 3.2. | |-------------------|--------|-----------------|----------------|----------------|------------------|----------------|-----------|-------------------| | | | | K | D Series | | | | | | | | Dimension | s in Inches | | Capa | cities in Pou | nds① | | | KAYDON
Bearing | S | iize | Land D | iameters | Dyn | amic | Static2 | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | KD040CP0 | 4.000 | 5.000 | 4.370 | 4.630 | 1,755 | 3,523 | 3,080 | .78 | | KD042CP0 | 4.250 | 5.250 | 4.620 | 4.880 | 1,787 | 3,556 | 3,190 | .83 | | KD045CP0 | 4.500 | 5.500 | 4.870 | 5.130 | 1,861 | 3,671 | 3,420 | .88. | | KD047CP0 | 4.750 | 5.750 | 5.120 | 5.380 | 1,892 | 3,701 | 3,530 | .94 | | KD050CP0 | 5.000 | 6.000 | 5.370 | 5.630 | 1,964 | 3,808 | 3,760 | 1.00 | | KD055CP0 | 5.500 | 6.500 | 5.870 | 6.130 | 2,063 | 3,937 | 4,100 | 1.06 | | KD060CP0 | 6.000 | 7.000 | 6.370 | 6.630 | 2,160 | 4,059 | 4,450 | 1.16 | | KD065CP0 | 6.500 | 7.500 | 6.870 | 7.130 | 2,254 | 4,174 | 4,790 | 1.22 | | KD070CP0 | 7.000 | 8.000 | 7.370 | 7.630 | 2,345 | 4,284 | 5,130 | 1.31 | | KD075CP0 | 7.500 | 8.500 | 7.870 | 8.130 | 2,434 | 4,388 | 5,470 | 1.41 | | KD080CP0 | 8.000 | 9.000 | 8.370 | 8.630 | 2,520 | 4,489 | 5,810 | 1.53 | | KD090CP0 | 9.000 | 10.000 | 9.370 | 9.630 | 2,688 | 4,678 | 6,500 | 1.72 | | KD100CP0 | 10.000 | 11.000 | 10.370 | 10.630 | 2,847 | 4,855 | 7,180 | 1.88 | | KD110CP0 | 11.000 | 12.000 | 11.370 | 11.630 | 3,000 | 5,021 | 7,870 | 2.06 | | KD120CP0 | 12.000 | 13.000 | 12.370 | 12.630 | 3,148 | 5,178 | 8,550 | 2.25 | | KD140CP0 | 14.000 | 15.000 | 14.370 | 14.630 | 3,427 | 5,469 | 9,920 | 2.73 | | KD160CP0 | 16.000 | 17.000 | 16.370 | 16.630 | 3,688 | 5,736 | 11,290 | 3.10 | | KD180CP0 | 18.000 | 19.000 | 18.370 | 18.630 | 3,933 | 5,982 | 12,650 | 3.48 | | KD200CP0 | 20.000 | 21.000 | 20.370 | 20.630 | 4,164 | 6,212 | 14,020 | 3.85 | | KD210CP0 | 21.000 | 22.000 | 21.370 | 21.630 | 4,274 | 6,321 | 14,706 | 4.04 | | KD250CP0 | 25.000 | 26.000 | 25.370 | 25.630 | 4,689 | 6,729 | 17,440 | 4.79 | | KD300CP0 | 30.000 | 31.000 | 30.370 | 30.630 | 5,153 | 7,186 | 20,860 | 5.73 | | | | | | | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). $^{{ \}mathfrak A}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type C – Open Reali-Slim Bearings, RADIAL CONTACT | KF Series | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|---------|------------------|----------------|---------|-------------------|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pour | nds① | | | | | | KAYDON | S | ize | Land Di | ameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | KF040CP0 | 4.000 | 5.500 | 4.555 | 4.945 | 3,559 | 6,334 | 5,360 | 1.9 | | | | | KF042CP0 | 4.250 | 5.750 | 4.805 | 5.195 | 3,655 | 6,472 | 5,640 | 2.0 | | | | | KF045CP0 | 4.500 | 6.000 | 5.055 | 5.445 | 3,750 | 6,605 | 5,930 | 2.1 | | | | | KF047CP0 | 4.750 | 6.250
| 5.305 | 5.695 | 3,843 | 6,732 | 6,210 | 2.2 | | | | | KF050CP0 | 5.000 | 6.500 | 5.555 | 5.945 | 3,936 | 6,855 | 6,490 | 2.3 | | | | | KF055CP0 | 5.500 | 7.000 | 6.055 | 6.445 | 4,116 | 7,089 | 7,050 | 2.5 | | | | | KF060CP0 | 6.000 | 7.500 | 6.555 | 6.945 | 4,291 | 7,308 | 7,620 | 2.7 | | | | | KF065CP0 | 6.500 | 8.000 | 7.055 | 7.445 | 4,461 | 7,516 | 8,180 | 2.9 | | | | | KF070CP0 | 7.000 | 8.500 | 7.555 | 7.945 | 4,628 | 7,713 | 8,750 | 3.2 | | | | | KF075CP0 | 7.500 | 9.000 | 8.055 | 8.445 | 4,791 | 7,901 | 9,310 | 3.4 | | | | | KF080CP0 | 8.000 | 9.500 | 8.555 | 8.945 | 4,949 | 8,081 | 9,880 | 3.5 | | | | | KF090CP0 | 9.000 | 10.500 | 9.555 | 9.945 | 5,256 | 8,421 | 11,000 | 3.9 | | | | | KF100CP0 | 10.000 | 11.500 | 10.555 | 10.945 | 5,550 | 8,737 | 12,130 | 4.3 | | | | | KF110CP0 | 11.000 | 12.500 | 11.555 | 11.945 | 5,833 | 9,033 | 13,260 | 4.8 | | | | | KF120CP0 | 12.000 | 13.500 | 12.555 | 12.945 | 6,105 | 9,313 | 14,390 | 5.2 | | | | | KF140CP0 | 14.000 | 15.500 | 14.555 | 14.945 | 6,620 | 9,832 | 16,650 | 6.0 | | | | | KF160CP0 | 16.000 | 17.500 | 16.555 | 16.945 | 7,104 | 10,306 | 18,900 | 7.1 | | | | | KF180CP0 | 18.000 | 19.500 | 18.555 | 18.945 | 7,557 | 10,744 | 21,160 | 7.9 | | | | | KF200CP0 | 20.000 | 21.500 | 20.555 | 20.945 | 7,986 | 11,153 | 23,420 | 8.9 | | | | | KF250CP0 | 25.000 | 26.500 | 25.555 | 25.945 | 8,963 | 12,074 | 29,060 | 10.9 | | | | | KF300CP0 | 30.000 | 31.500 | 30.555 | 30.945 | 9,828 | 12,887 | 34,700 | 13.0 | | | | | KF350CP0 | 35.000 | 36.500 | 35.555 | 35.945 | 10,603 | 13,620 | 40,350 | 15.1 | | | | | KF400CP0 | 40.000 | 41.500 | 40.555 | 40.945 | 11,302 | 14,289 | 45,990 | 17.2 | | | | | | | | K | G Series | | | | | | |-------------------|--------|-----------------|----------------|----------|------------------|----------------|---------|-------------------|---------------------------------| | | | Dimension | s in Inches | | Capa | cities in Pou | nds① | | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyn | amic | Static2 | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | Snap-over separator | | KG040CP0 | 4.000 | 6.000 | 4.742 | 5.258 | 6,115 | 9,579 | 8,210 | 3.6 | 1/2" balls | | KG042CP0 | 4.250 | 6.250 | 4.992 | 5.508 | 6,061 | 9,481 | 8,210 | 3.8 | | | KG045CP0 | 4.500 | 6.500 | 5.242 | 5.758 | 6,227 | 9,797 | 8,760 | 4.0 | ─ 1.000 ─ ► | | KG047CP0 | 4.750 | 6.750 | 5.492 | 6.008 | 6,487 | 10,099 | 9,300 | 4.1 | F - | | KG050CP0 | 5.000 | 7.000 | 5.742 | 6.258 | 6,691 | 10,388 | 9,850 | 4.3 | | | KG055CP0 | 5.500 | 7.500 | 6.242 | 6.758 | 6,850 | 10,563 | 10,400 | 4.7 | | | KG060CP0 | 6.000 | 8.000 | 6.742 | 7.258 | 7,241 | 11,085 | 11,490 | 5.1 | | | KG065CP0 | 6.500 | 8.500 | 7.242 | 7.758 | 7,393 | 11,234 | 12,040 | 5.4 | 1. | | KG070CP0 | 7.000 | 9.000 | 7.742 | 8.258 | 7,764 | 11,705 | 13,130 | 5.8 | | | KG075CP0 | 7.500 | 9.500 | 8.242 | 8.758 | 7,911 | 11,835 | 13,680 | 6.1 | | | KG080CP0 | 8.000 | 10.000 | 8.742 | 9.258 | 8,265 | 12,266 | 14,770 | 6.5 | L ₂ | | KG090CP0 | 9.000 | 11.000 | 9.742 | 10.258 | 8,743 | 12,782 | 16,420 | 7.2 | L ₁ | | KG100CP0 | 10.000 | 12.000 | 10.742 | 11.258 | 9,204 | 13,261 | 18,060 | 7.9 | - 1 | | KG110CP0 | 11.000 | 13.000 | 11.742 | 12.258 | 9,648 | 13,710 | 19,700 | 8.6 | | | KG120CP0 | 12.000 | 14.000 | 12.742 | 13.258 | 10,074 | 14,133 | 21,340 | 9.3 | | | KG140CP0 | 14.000 | 16.000 | 14.742 | 15.258 | 10,886 | 14,916 | 24,620 | 10.8 | ④ F = .080 | | KG160CP0 | 16.000 | 18.000 | 16.742 | 17.258 | 11,648 | 15,631 | 27,910 | 12.3 | Bearing corners are | | KG180CP0 | 18.000 | 20.000 | 18.742 | 19.258 | 12,367 | 16,291 | 31,190 | 13.7 | normally chamfered | | KG200CP0 | 20.000 | 22.000 | 20.742 | 21.258 | 13,044 | 16,907 | 34,470 | 15.8 | | | KG220CP0 | 22.000 | 24.000 | 22.742 | 23.258 | 13,685 | 17,486 | 37,757 | 16.8 | | | KG250CP0 | 25.000 | 27.000 | 25.742 | 26.258 | 14,591 | 18,295 | 42,680 | 19.5 | | | KG300CP0 | 30.000 | 32.000 | 30.742 | 31.258 | 15,963 | 19,519 | 50,890 | 23.3 | | | KG350CP0 | 35.000 | 37.000 | 35.742 | 36.258 | 17,195 | 20,622 | 59,100 | 27.1 | | | KG400CP0 | 40.000 | 42.000 | 40.742 | 41.258 | 18,307 | 21,630 | 67,310 | 30.8 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Open Reali-Slim Bearing Selections Type X – FOUR-POINT CONTACT A Conrad assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications. | KAA Series | | | | | | | | | | | | | | |------------|----------------------------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--| | KANDON | Di | imension | s in Inch | es | | | Capaci | ties① | | | | | | | | KAYDON Bearing Size Land Diamete | | | | | Dynamic | | | Static2 | | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | KAA10XL0 | 1.000 | 1.375 | 1.140 | 1.235 | 247 | 370 | 110 | 290 | 730 | 170 | .026 | | | | KAA15XL0 | 1.500 | 1.875 | 1.640 | 1.735 | 296 | 460 | 187 | 400 | 1,000 | 340 | .039 | | | | KAA17XL0 | 1.750 | 2.125 | 1.890 | 1.985 | 319 | 500 | 232 | 460 | 1,140 | 440 | .045 | | | | KA Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--| | MANDON | Di | imension | s in Inch | ies | | | Capaci | ities① | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | KA020XP0 | 2.000 | 2.500 | 2.186 | 2.314 | 514 | 790 | 434 | 680 | 1,710 | 770 | .10 | | | KA025XP0 | 2.500 | 3.000 | 2.686 | 2.814 | 583 | 910 | 601 | 830 | 2,090 | 1,150 | .13 | | | KA027XP0 | 2.750 | 3.250 | 2.936 | 3.064 | 614 | 960 | 690 | 910 | 2,275 | 1,365 | .14 | | | KA030XP0 | 3.000 | 3.500 | 3.186 | 3.314 | 643 | 1,010 | 785 | 990 | 2,470 | 1,600 | .15 | | | KA035XP0 | 3.500 | 4.000 | 3.686 | 3.814 | 701 | 1,110 | 986 | 1,140 | 2,850 | 2,130 | .18 | | | KA040XP0 | 4.000 | 4.500 | 4.186 | 4.314 | 756 | 1,210 | 1,205 | 1,290 | 3,220 | 2,740 | .19 | | | KA042XP0 | 4.250 | 4.750 | 4.436 | 4.564 | 783 | 1,260 | 1,321 | 1,370 | 3,410 | 3,070 | .20 | | | KA045XP0 | 4.500 | 5.000 | 4.686 | 4.814 | 809 | 1,310 | 1,441 | 1,440 | 3,600 | 3,420 | .22 | | | KA047XP0 | 4.750 | 5.250 | 4.936 | 5.064 | 834 | 1,350 | 1,565 | 1,520 | 3,790 | 3,790 | .23 | | | KA050XP0 | 5.000 | 5.500 | 5.186 | 5.314 | 859 | 1,400 | 1,693 | 1,590 | 3,980 | 4,180 | .24 | | | KA055XP0 | 5.500 | 6.000 | 5.686 | 5.814 | 908 | 1,480 | 1,959 | 1,750 | 4,360 | 5,020 | .25 | | | KA060XP0 | 6.000 | 6.500 | 6.186 | 6.314 | 955 | 1,570 | 2,240 | 1,900 | 4,740 | 5,930 | .28 | | | KA065XP0 | 6.500 | 7.000 | 6.686 | 6.814 | 1,001 | 1,650 | 2,535 | 2,050 | 5,120 | 6,910 | .30 | | | KA070XP0 | 7.000 | 7.500 | 7.186 | 7.314 | 1,046 | 1,730 | 2,844 | 2,200 | 5,500 | 7,980 | .31 | | | KA075XP0 | 7.500 | 8.000 | 7.686 | 7.814 | 1,089 | 1,810 | 3,165 | 2,350 | 5,880 | 9,120 | .34 | | | KA080XP0 | 8.000 | 8.500 | 8.186 | 8.314 | 1,131 | 1,890 | 3,499 | 2,500 | 6,260 | 10,330 | .38 | | | KA090XP0 | 9.000 | 9.500 | 9.186 | 9.314 | 1,212 | 2,040 | 4,204 | 2,810 | 7,020 | 12,990 | .44 | | | KA100XP0 | 10.000 | 10.500 | 10.186 | 10.314 | 1,289 | 2,180 | 4,956 | 3,110 | 7,780 | 15,940 | .50 | | | KA110XP0 | 11.000 | 11.500 | 11.186 | 11.314 | 1,362 | 2,320 | 5,750 | 3,410 | 8,540 | 19,210 | .52 | | | KA120XP0 | 12.000 | 12.500 | 12.186 | 12.314 | 1,433 | 2,450 | 6,587 | 3,720 | 9,300 | 22,770 | .56 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type X – Open Reali-Slim Bearings, FOUR-POINT CONTACT | | KB Series | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--| | I/ AVD ON | D | imension | s in Inche | S | | | Capaci | ties① | | | | | | KAYDON
Bearing | Si | ze | Land Dia | meters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | KB020XP0 | 2.000 | 2.625 | 2.231 | 2.393 | 758 | 1,130 | 658 | 930 | 2,340 | 1,080 | .16 | | | KB025XP0 | 2.500 | 3.125 | 2.731 | 2.893 | 848 | 1,290 | 895 |
1,140 | 2,840 | 1,600 | .19 | | | KB030XP0 | 3.000 | 3.625 | 3.231 | 3.393 | 933 | 1,440 | 1,159 | 1,340 | 3,350 | 2,220 | .24 | | | KB035XP0 | 3.500 | 4.125 | 3.731 | 3.893 | 1,014 | 1,590 | 1,450 | 1,540 | 3,860 | 2,940 | .27 | | | KB040XP0 | 4.000 | 4.625 | 4.231 | 4.393 | 1,091 | 1,720 | 1,764 | 1,750 | 4,370 | 3,770 | .30 | | | KB042XP0 | 4.250 | 4.875 | 4.481 | 4.643 | 1,120 | 1,780 | 1,917 | 1,830 | 4,570 | 4,170 | .31 | | | KB045XP0 | 4.500 | 5.125 | 4.731 | 4.893 | 1,165 | 1,850 | 2,103 | 1,950 | 4,880 | 4,690 | .33 | | | KB047XP0 | 4.750 | 5.375 | 4.981 | 5.143 | 1,193 | 1,900 | 2,265 | 2,030 | 5,080 | 5,140 | .34 | | | KB050XP0 | 5.000 | 5.625 | 5.231 | 5.393 | 1,236 | 1,980 | 2,463 | 2,150 | 5,380 | 5,720 | .38 | | | KB055XP0 | 5.500 | 6.125 | 5.731 | 5.893 | 1,304 | 2,100 | 2,844 | 2,360 | 5,890 | 6,850 | .41 | | | KB060XP0 | 6.000 | 6.625 | 6.231 | 6.393 | 1,371 | 2,220 | 3,247 | 2,560 | 6,400 | 8,080 | .44 | | | KB065XP0 | 6.500 | 7.125 | 6.731 | 6.893 | 1,435 | 2,340 | 3,668 | 2,760 | 6,910 | 9,410 | .47 | | | KB070XP0 | 7.000 | 7.625 | 7.231 | 7.393 | 1,498 | 2,450 | 4,109 | 2,970 | 7,420 | 10,850 | .50 | | | KB075XP0 | 7.500 | 8.125 | 7.731 | 7.893 | 1,559 | 2,560 | 4,568 | 3,170 | 7,920 | 12,380 | .53 | | | KB080XP0 | 8.000 | 8.625 | 8.231 | 8.393 | 1,618 | 2,670 | 5,045 | 3,370 | 8,430 | 14,020 | .57 | | | KB090XP0 | 9.000 | 9.625 | 9.231 | 9.393 | 1,732 | 2,880 | 6,050 | 3,780 | 9,450 | 17,600 | .66 | | | KB100XP0 | 10.000 | 10.625 | 10.231 | 10.393 | 1,841 | 3,080 | 7,121 | 4,190 | 10,460 | 21,580 | .73 | | | KB110XP0 | 11.000 | 11.625 | 11.231 | 11.393 | 1,945 | 3,280 | 8,254 | 4,590 | 11,480 | 25,970 | .75 | | | KB120XP0 | 12.000 | 12.625 | 12.231 | 12.393 | 2,045 | 3,470 | 9,446 | 5,000 | 12,500 | 30,770 | .83 | | | KB140XP0 | 14.000 | 14.625 | 14.231 | 14.393 | 2,234 | 3,840 | 11,994 | 5,810 | 14,530 | 41,580 | 1.05 | | | KB160XP0 | 16.000 | 16.625 | 16.231 | 16.393 | 2,410 | 4,190 | 14,750 | 6,620 | 16,560 | 54,020 | 1.20 | | | KB180XP0 | 18.000 | 18.625 | 18.231 | 18.393 | 2,576 | 4,520 | 17,694 | 7,440 | 18,590 | 68,090 | 1.35 | | | KB200XP0 | 20.000 | 20.625 | 20.231 | 20.393 | 2,731 | 4,850 | 20,813 | 8,250 | 20,620 | 83,780 | 1.50 | | ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 **Need Service Fast?** 1-800-514-3066 www.kaydonbearings.com ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $^{{\}mathfrak D}$ Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type X – Open Reali-Slim Bearings, FOUR-POINT CONTACT | KC Series | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-------------------| | | D | imensior | ns in Inch | ies | | | Capaci | ities① | | | | | KAYDON
Bearing | S | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment
(in-lbs) | lbs. | | KC040XP0 | 4.000 | 4.750 | 4.277 | 4.473 | 1,417 | 2,210 | 2,326 | 2,100 | 5,260 | 4,600 | .45 | | KC042XP0 | 4.250 | 5.000 | 4.527 | 4.723 | 1,464 | 2,290 | 2,541 | 2,220 | 5,560 | 5,140 | .47 | | KC045XP0 | 4.500 | 5.250 | 4.777 | 4.973 | 1,510 | 2,380 | 2,762 | 2,340 | 5,860 | 5,710 | .48 | | KC047XP0 | 4.750 | 5.500 | 5.027 | 5.223 | 1,556 | 2,460 | 2,991 | 2,460 | 6,160 | 6,320 | .50 | | KC050XP0 | 5.000 | 5.750 | 5.277 | 5.473 | 1,600 | 2,540 | 3,226 | 2,590 | 6,460 | 6,950 | .58 | | KC055XP0 | 5.500 | 6.250 | 5.777 | 5.973 | 1,687 | 2,690 | 3,717 | 2,830 | 7,060 | 8,300 | .59 | | KC060XP0 | 6.000 | 6.750 | 6.277 | 6.473 | 1,770 | 2,840 | 4,234 | 3,070 | 7,660 | 9,770 | .63 | | KC065XP0 | 6.500 | 7.250 | 6.777 | 6.973 | 1,851 | 2,990 | 4,775 | 3,310 | 8,270 | 11,370 | .68 | | KC070XP0 | 7.000 | 7.750 | 7.277 | 7.473 | 1,931 | 3,130 | 5,341 | 3,550 | 8,870 | 13,080 | .73 | | KC075XP0 | 7.500 | 8.250 | 7.777 | 7.973 | 2,007 | 3,270 | 5,930 | 3,790 | 9,470 | 14,910 | .78 | | KC080XP0 | 8.000 | 8.750 | 8.277 | 8.473 | 2,082 | 3,410 | 6,542 | 4,030 | 10,070 | 16,870 | .84 | | KC090XP0 | 9.000 | 9.750 | 9.277 | 9.473 | 2,226 | 3,670 | 7,830 | 4,510 | 11,270 | 21,130 | .94 | | KC100XP0 | 10.000 | 10.750 | 10.277 | 10.473 | 2,364 | 3,930 | 9,201 | 4,990 | 12,470 | 25,880 | 1.06 | | KC110XP0 | 11.000 | 11.750 | 11.277 | 11.473 | 2,496 | 4,180 | 10,651 | 5,470 | 13,680 | 31,110 | 1.16 | | KC120XP0 | 12.000 | 12.750 | 12.277 | 12.473 | 2,622 | 4,420 | 12,174 | 5,950 | 14,880 | 36,830 | 1.25 | | KC140XP0 | 14.000 | 14.750 | 14.277 | 14.473 | 2,862 | 4,890 | 15,434 | 6,910 | 17,280 | 49,690 | 1.52 | | KC160XP0 | 16.000 | 16.750 | 16.277 | 16.473 | 3,086 | 5,330 | 18,955 | 7,880 | 19,690 | 64,480 | 1.73 | | KC180XP0 | 18.000 | 18.750 | 18.277 | 18.473 | 3,295 | 5,760 | 22,712 | 8,840 | 22,090 | 81,190 | 1.94 | | KC200XP0 | 20.000 | 20.750 | 20.277 | 20.473 | 3,492 | 6,170 | 26,695 | 9,800 | 24,500 | 99,830 | 2.16 | | KC250XP0 | 25.000 | 25.750 | 25.277 | 25.473 | 3,941 | 7,140 | 37,518 | 12,200 | 30,510 | 154,800 | 2.69 | | KC300XP0 | 30.000 | 30.750 | 30.277 | 30.473 | 4,338 | 8,050 | 49,436 | 14,610 | 36,520 | 221,900 | 3.21 | # Snap-over separator 3/16" balls .375 F .375 .375 $\Im F = .040$ Bearing corners are normally chamfered | KD Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--| | | Di | imension | s in Inch | ies | | | Capaci | ties① | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | KD040XP0 | 4.000 | 5.000 | 4.370 | 4.630 | 2,311 | 3,520 | 3,901 | 3,080 | 7,700 | 6,930 | .78 | | | KD042XP0 | 4.250 | 5.250 | 4.620 | 4.880 | 2,355 | 3,600 | 4,196 | 3,190 | 7,980 | 7,580 | .83 | | | KD045XP0 | 4.500 | 5.500 | 4.870 | 5.130 | 2,454 | 3,770 | 4,602 | 3,420 | 8,550 | 8,550 | .88 | | | KD047XP0 | 4.750 | 5.750 | 5.120 | 5.380 | 2,496 | 3,860 | 4,916 | 3,530 | 8,840 | 9,280 | .94 | | | KD050XP0 | 5.000 | 6.000 | 5.370 | 5.630 | 2,592 | 4,020 | 5,348 | 3,760 | 9,410 | 10,350 | 1.00 | | | KD055XP0 | 5.500 | 6.500 | 5.870 | 6.130 | 2,725 | 4,260 | 6,134 | 4,100 | 10,260 | 12,310 | 1.06 | | | KD060XP0 | 6.000 | 7.000 | 6.370 | 6.630 | 2,855 | 4,490 | 6,961 | 4,450 | 11,120 | 14,450 | 1.16 | | | KD065XP0 | 6.500 | 7.500 | 6.870 | 7.130 | 2,980 | 4,720 | 7,826 | 4,790 | 11,970 | 16,760 | 1.22 | | | KD070XP0 | 7.000 | 8.000 | 7.370 | 7.630 | 3,103 | 4,940 | 8,730 | 5,130 | 12,830 | 19,240 | 1.31 | | | KD075XP0 | 7.500 | 8.500 | 7.870 | 8.130 | 3,222 | 5,160 | 9,669 | 5,470 | 13,680 | 21,890 | 1.41 | | | KD080XP0 | 8.000 | 9.000 | 8.370 | 8.630 | 3,338 | 5,370 | 10,643 | 5,810 | 14,540 | 24,710 | 1.53 | | | KD090XP0 | 9.000 | 10.000 | 9.370 | 9.630 | 3,561 | 5,790 | 12,693 | 6,500 | 16,250 | 30,870 | 1.72 | | | KD100XP0 | 10.000 | 11.000 | 10.370 | 10.630 | 3,776 | 6,190 | 14,872 | 7,180 | 17,960 | 37,710 | 1.88 | | | | 11.000 | 12.000 | 11.370 | 11.630 | 3,981 | 6,570 | 17,173 | 7,870 | 19,670 | 45,230 | 2.06 | | | KD120XP0 | 12.000 | 13.000 | 12.370 | 12.630 | 4,178 | 6,950 | 19,590 | 8,550 | 21,380 | 53,440 | 2.25 | | | KD140XP0 | 14.000 | 15.000 | 14.370 | 14.630 | 4,551 | 7,670 | 24,755 | 9,920 | 24,800 | 71,910 | 2.73 | | | KD160XP0 | 16.000 | 17.000 | 16.370 | 16.630 | 4,899 | 8,360 | 30,325 | 11,290 | 28,220 | 93,110 | 3.10 | | | KD180XP0 | 18.000 | 19.000 | 18.370 | 18.630 | 5,226 | 9,030 | 36,268 | 12,650 | 31,640 | 117,000 | 3.48 | | | KD200XP0 | 20.000 | 21.000 | 20.370 | 20.630 | 5,534 | 9,670 | 42,561 | 14,020 | 35,060 | 143,700 | 3.85 | | | KD210XP0 | 21.000 | 22.000 | 21.370 | 21.630 | 5,682 | 9,980 | 45,826 | 14,710 | 36,770 | 158,100 | 4.04 | | | KD250XP0 | 25.000 | 26.000 | 25.370 | 25.630 | 6,235 | 11,180 | 59,649 | 17,440 | 43,610 | 222,400 | 4.79 | | | KD300XP0 | 30.000 | 31.000 | 30.370 | 30.630 | 6,856 | 12,600 | 78,447 | 20,860 | 52,160 | 318,100 | 5.73 | | Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $^{{\}bf @ Static \, capacities \, are \, non-brinell \, limits \, based \, on \, rigid \, support \, from \, the \, shaft \, and \, housing.}$ $[\]ensuremath{\mathfrak{G}}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type X – Open Reali-Slim Bearings, FOUR-POINT CONTACT | | | | | | KF | Series | | | | | | |-------------------|--------|-----------------|------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | I/ DVP AN | D | imensior | ns in Incl | ies | | | Capaci | ities① | | | | | KAYDON
Bearing | S | ize | Land Di | ameters | | Dynamic | | | Static@ | | Approx.
Wt. in | | Number | Bore | Outside
Dia. | Lı | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | KF040XP0 | 4.000 | 5.500 | 4.555 | 4.945 |
4,665 | 6,830 | 8,312 | 5,360 | 13,400 | 12,730 | 1.9 | | KF042XP0 | 4.250 | 5.750 | 4.805 | 5.195 | 4,795 | 7,070 | 8,993 | 5,640 | 14,110 | 14,110 | 2.0 | | KF045XP0 | 4.500 | 6.000 | 5.055 | 5.445 | 4,923 | 7,300 | 9,695 | 5,930 | 14,810 | 15,550 | 2.1 | | KF047XP0 | 4.750 | 6.250 | 5.305 | 5.695 | 5,048 | 7,530 | 10,416 | 6,210 | 15,520 | 17,070 | 2.2 | | KF050XP0 | 5.000 | 6.500 | 5.555 | 5.945 | 5,172 | 7,760 | 11,157 | 6,490 | 16,220 | 18,660 | 2.3 | | KF055XP0 | 5.500 | 7.000 | 6.055 | 6.445 | 5,415 | 8,200 | 12,696 | 7,050 | 17,630 | 22,040 | 2.5 | | KF060XP0 | 6.000 | 7.500 | 6.555 | 6.945 | 5,651 | 8,630 | 14,311 | 7,620 | 19,050 | 25,710 | 2.7 | | KF065XP0 | 6.500 | 8.000 | 7.055 | 7.445 | 5,880 | 9,050 | 15,993 | 8,180 | 20,460 | 29,660 | 2.9 | | KF070XP0 | 7.000 | 8.500 | 7.555 | 7.945 | 6,103 | 9,460 | 17,744 | 8,750 | 21,870 | 33,890 | 3.2 | | KF075XP0 | 7.500 | 9.000 | 8.055 | 8.445 | 6,323 | 9,870 | 19,568 | 9,310 | 23,280 | 38,410 | 3.4 | | KF080XP0 | 8.000 | 9.500 | 8.555 | 8.945 | 6,535 | 10,260 | 21,453 | 9,880 | 24,690 | 43,200 | 3.5 | | KF090XP0 | 9.000 | 10.500 | 9.555 | 9.945 | 6,947 | 11,030 | 25,410 | 11,000 | 27,510 | 53,640 | 3.9 | | KF100XP0 | 10.000 | 11.500 | 10.555 | 10.945 | 7,342 | 11,770 | 29,608 | 12,130 | 30,330 | 65,210 | 4.3 | | KF110XP0 | 11.000 | 12.500 | 11.555 | 11.945 | 7,721 | 12,490 | 34,032 | 13,260 | 33,150 | 77,910 | 4.8 | | KF120XP0 | 12.000 | 13.500 | 12.555 | 12.945 | 8,084 | 13,190 | 38,666 | 14,390 | 35,970 | 91,730 | 5.2 | | KF140XP0 | 14.000 | 15.500 | 14.555 | 14.945 | 8,775 | 14,530 | 48,556 | 16,650 | 41,620 | 122,800 | 6.0 | | KF160XP0 | 16.000 | 17.500 | 16.555 | 16.945 | 9,421 | 15,820 | 59,200 | 18,900 | 47,260 | 158,300 | 7.1 | | KF180XP0 | 18.000 | 19.500 | 18.555 | 18.945 | 10,028 | 17,060 | 70,537 | 21,160 | 52,900 | 198,400 | 7.9 | | KF200XP0 | 20.000 | 21.500 | 20.555 | 20.945 | 10,602 | 18,250 | 82,528 | 23,420 | 58,550 | 243,000 | 8.9 | | KF250XP0 | 25.000 | 26.500 | 25.555 | 25.945 | 11,909 | 21,070 | 115,037 | 29,060 | 72,650 | 374,200 | 10.9 | | KF300XP0 | 30.000 | 31.500 | 30.555 | 30.945 | 13,065 | 23,720 | 150,708 | 34,700 | 86,760 | 533,600 | 13.0 | | KF350XP0 | 35.000 | 36.500 | 35.555 | 35.945 | 14,100 | 26,220 | 189,106 | 40,350 | 100,900 | 721,200 | 15.1 | | KF400XP0 | 40.000 | 41.500 | 40.555 | 40.945 | 15,034 | 28,620 | 229,832 | 45,990 | 115,000 | 937,100 | 17.2 | normally chamfered | | | | | | | KG | Series | | | | | | | |---|----------------------|--------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|--------------------|-----------------|-------------------|---| | İ | | Di | imensior | ns in Inch | ies | | | Capaci | ities① | | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | Snap-over separator | | | KG040XP0 | 4.000 | 6.000 | 4.742 | 5.258 | 7,979 | 11,260 | 14,966 | 8,210 | 20,520 | 20,520 | 3.6 | 1/2" balls | | | KG042XP0 | 4.250 | 6.250 | 4.992 | 5.508 | 7,917 | 11,260 | 15,592 | 8,210 | 20,520 | 21,550 | 3.8 | | | | KG045XP0 | 4.500 | 6.500 | 5.242 | 5.758 | 8,205 | 11,750 | 16,930 | 8,760 | 21,890 | 24,080 | 4.0 | ─ 1.000 ─ ► | | | KG047XP0 | 4.750 | 6.750 | 5.492 | 6.008 | 8,487 | 12,230 | 18,306 | 9,300 | 23,260 | 26,740 | 4.1 | F - | | | KG050XP0 | 5.000 | 7.000 | 5.742 | 6.258 | 8,762 | 12,710 | 19,721 | 9,850 | 24,620 | 29,550 | 4.3 | | | | KG055XP0 | 5.500 | 7.500 | 6.242 | 6.758 | 8,979 | 13,180 | 21,896 | 10,400 | 25,990 | 33,790 | 4.7 | | | | KG060XP0 | 6.000 | 8.000 | 6.742 | 7.258 | 9,503 | 14,090 | 24,956 | 11,490 | 28,730 | 40,220 | 5.1 | | | | KG065XP0 | 6.500 | 8.500 | 7.242 | 7.758 | 9,713 | 14,530 | 27,327 | 12,040 | 30,100 | 45,140 | 5.4 | 1.000 | | | KG070XP0 | 7.000 | 9.000 | 7.742 | 8.258 | 10,208 | 15,400 | 30,636 | 13,130 | 32,830 | 52,530 | 5.8 | | | | KG075XP0 | 7.500 | 9.500 | 8.242 | 8.758 | 10,410 | 15,820 | 33,196 | 13,680 | 34,200 | 58,140 | 6.1 | │ | | | KG080XP0 | 8.000 | 10.000 | 8.742 | 9.258 | 10,882 | 16,650 | 36,743 | 14,770 | 36,940 | 66,480 | 6.5 | L ₂ | | | KG090XP0 | 9.000 | 11.000 | 9.742 | 10.258 | 11,526 | 17,870 | 43,240 | 16,420 | 41,040 | 82,080 | 7.2 | L ₁ | | | KG100XP0 | | 12.000 | 10.742 | 11.258 | 12,147 | 19,040 | 50,124 | 18,060 | 45,140 | 99,320 | 7.9 | - 1 | | | KG110XP0 | | 13.000 | 11.742 | 12.258 | 12,739 | 20,180 | 57,347 | 19,700 | 49,250 | 118,200 | 8.6 | | | | KG120XP0 | | 14.000 | 12.742 | 13.258 | 13,315 | 21,280 | 64,935 | 21,340 | 53,350 | 138,700 | 9.3 | | | | KG140XP0 | | 16.000 | 14.742 | 15.258 | 14,404 | 23,410 | 81,056 | 24,620 | 61,560 | 184,700 | 10.8 | 3 F = .080 | | | | | 18.000 | 16.742 | 17.258 | 15,425 | 25,450 | 98,373 | 27,910 | 69,770 | 237,200 | 12.3 | Bearing corners are
normally chamfered | | | KG180XP0 | | 20.000 | 18.742 | 19.258 | 16,386 | 27,410 | 116,793 | 31,190 | 77,980 | 296,300 | 13.7 | normany charmered | | | KG200XP0 | 20.000 | 22.000 | 20.742 | 21.258 | 17,293 | 29,300 | 136,238 | 34,470 | 86,180 | 362,000 | 15.8 | | | | KG220XP0 | 22.000 | 24.000 | 22.742 | 23.258 | 18,152 | 31,130 | 156,625 | 37,760 | 94,390 | 434,200 | 17.3 | | | | KG250XP0 | | 27.000 | 25.742 | 26.258 | 19,360 | 33,780 | 188,838 | 42,680 | 106,700 | 554,900 | 19.5 | | | | | 30.000 | 32.000 | 30.742 | 31.258 | 21,200 | 37,980 | 246,541 | 50,890 | 127,200 | 788,800 | 23.3 | | | | KG350XP0
KG400XP0 | | 37.000
42.000 | 35.742
40.742 | 36.258
41.258 | 22,845
24,332 | 41,970
45,770 | 308,527
374,256 | 59,100
67,310 | 147,700
168,300 | 1,064,000 | 27.1
30.8 | | | | | | | | | , | , 0 | , | , | , | ,, | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $^{@ \ \, \}text{Static capacities are non-brinell limits based on rigid support from the shaft and housing}. \\$ ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Sealed Reali-Slim Bearing Selections #### **Seals and Shields Available** To realize the full benefits from anti-friction bearings, it is important to keep them clean and well lubricated. Seals and shields, properly designed and mounted, help to accomplish this. In this catalog these terms have the following definitions: **Seal** – a contacting closure between the stationary and rotating members, for retaining lubricant within and excluding foreign material from the bearing. Seals are retained in the outer race and make positive contact with the inner race. **Shield** – a closure for the same purpose as a seal but without positive contact. A seal is more effective, but requires more turning effort (torque), generates more heat, and as a result, has a lower speed limit than an open or shielded bearing. The accompanying illustrations are examples by which Reali-Slim bearings may be sealed or shielded, either integrally or externally. The lubricant and lubrication systems, torque requirements, speed, and operating environment will influence the choice. Integral seals and shields offer a very compact overall design with the additional advantage of protecting the bearing before, during and after installation. Figure 2-2 shows a double-sealed Reali-Slim bearing, available from stock in the JU series. In this case, adding shields and seals requires an increase in the width of the bearing (see page 2, Position 2). In the case of JA, JB, and JG double-sealed Reali-Slim bearings, the bearing width is the same as that of the open bearing. Shown in Figure 2-4 is a double-shielded bearing for use where a shield will suffice or is required due to torque limitations or speed. Where weight and space are at a premium, and a seal or shield is required on one side only, single-sealed or single-shielded bearings are available as custom options. **Note:** Sealed Reali-Slim bearings are pre-lubricated with a general purpose grease. Operating conditions (i.e. time, temperature, speed, environment) may result in premature lubrication degradation. A variety of lubricants are available as options to meet your specifications. Figure 2-1 Double-Sealed Reali-Slim JA/JB bearing Figure 2-2 Double-Sealed Reali-Slim JU bearing Figure 2-3 Double-Sealed Reali-Slim JG bearing Figure 2-4 Double-Shielded Reali-Slim EA/EB bearing **Note:** Pictures are for illustration only and are not intended for design specification. ### **Sealed Reali-Slim Bearings, Seals and Shields (continued)** Figure 2-5 shows a nitrile lip-type seal ring available in a variety of cross-sections compatible with the Reali-Slim bearing series. While this is a very effective seal, torque is substantial and speeds must not exceed 1000 feet per minute if continuous. If grease lubrication is used and torque is not critical, a very effective shield is that shown in Figure 2-6, where annular grooves are cut in the housing shoulder and clamp plate and filled with grease. When a separate shield is required, washers made from precision flat stock are ideal, as shown in Figure 2-7. They serve well where weight limitations are strict. Whether or not integral seals or shields are specified, bearings must be isolated from hostile environments and debris. Figure 2-5 Nitrile Lip-Type Seal Figure 2-6 Annular Grooves Figure 2-7 Washer Shield From Precision Flat Stock All the sealed bearings on the following pages are also available in stainless steel. To order, replace the J in the part number with a W. # Sealed Reali-Slim Bearing Selections Type C – RADIAL CONTACT A Conrad assembled bearing designed primarily for application of radial
load—deep ball grooves also permit application of thrust load in either direction – often used in conjunction with another bearing. | JHA Series (Double Sealed) | | | | | | | | | | | | | |----------------------------|-------|-----------------|----------------|----------------|------------------|----------------|---------|--------------------|------------------|-------------------|--|--| | W.11/2.01/ | | Dimension | s in Inche | es | Capaci | ities in Pou | unds① | | Torque | | | | | KAYDON
Bearing | S | Size | | Land Diameters | | amic | Static2 | Limiting
Speeds | Max. No | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | (RPM*) | Load
(in-oz)④ | lbs. | | | | JHA10CL0 | 1.000 | 1.375 | 1.108 | 1.274 | 188 | 558 | 290 | 6,110 | 5 | .035 | | | | JHA15CL0 | 1.500 | 1.875 | 1.608 | 1.774 | 225 | 632 | 400 | 4,300 | 5 | .052 | | | | JHA17CL0 | 1.750 | 2.125 | 1.858 | 2.024 | 242 | 663 | 460 | 3,750 | 6 | .060 | | | | Snap-over separator 3/32" balls | |---| | .250 F | | 1875
L ₂ 1 | | ⑤ F = .015 | | Bearing corners are
normally chamfered | | JA Series (Double Sealed) | | | | | | | | | | | | | | |---------------------------|-------|-----------------|----------------|----------------|------------------|----------------|---------|--------------------|------------------|-------------------|--|--|--| | WAVDON | | Dimension | s in Inche | S | Capac | ities in Pοι | ınds① | | Torque | | | | | | KAYDON
Bearing | Si | ize | Land Di | Land Diameters | | amic | Static2 | Limiting
Speeds | Max. No | Approx.
Wt. in | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial3 | Radial | (RPM*) | Load
(in-oz)④ | lbs. | | | | | JA020CP0 | 2.000 | 2.500 | 2.148 | 2.356 | 393 | 1,012 | 680 | 3,220 | 6 | .10 | | | | | JA025CP0 | 2.500 | 3.000 | 2.648 | 2.856 | 442 | 1,094 | 830 | 2,630 | 8 | .12 | | | | | JA030CP0 | 3.000 | 3.500 | 3.148 | 3.356 | 487 | 1,166 | 990 | 2,230 | 12 | .14 | | | | | JA035CP0 | 3.500 | 4.000 | 3.648 | 3.856 | 530 | 1,230 | 1,140 | 1,930 | 16 | .17 | | | | | JA040CP0 | 4.000 | 4.500 | 4.148 | 4.356 | 571 | 1,289 | 1,290 | 1,700 | 20 | .19 | | | | | JA042CP0 | 4.250 | 4.750 | 4.398 | 4.606 | 591 | 1,317 | 1,370 | 1,610 | 24 | .20 | | | | | JA045CP0 | 4.500 | 5.000 | 4.648 | 4.856 | 610 | 1,344 | 1,440 | 1,520 | 28 | .21 | | | | | JA047CP0 | 4.750 | 5.250 | 4.898 | 5.106 | 629 | 1,369 | 1,520 | 1,450 | 32 | .22 | | | | | JA050CP0 | 5.000 | 5.500 | 5.148 | 5.356 | 648 | 1,394 | 1,590 | 1,380 | 36 | .23 | | | | | JA055CP0 | 5.500 | 6.000 | 5.648 | 5.856 | 685 | 1,442 | 1,750 | 1,260 | 44 | .25 | | | | | JA060CP0 | 6.000 | 6.500 | 6.148 | 6.356 | 720 | 1,487 | 1,900 | 1,160 | 52 | .28 | | | | | JA065CP0 | 6.500 | 7.000 | 6.648 | 6.856 | 754 | 1,530 | 2,050 | 1,070 | 61 | .30 | | | | | JA070CP0 | 7.000 | 7.500 | 7.148 | 7.356 | 787 | 1,571 | 2,200 | 1,000 | 70 | .31 | | | | | JA075CP0 | 7.500 | 8.000 | 7.648 | 7.856 | 820 | 1,610 | 2,350 | 930 | 80 | .34 | | | | | | | | | | | | , | • | | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. $^{\ \, \ \, \ \, \ \, \ \, \ \,}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type C – Sealed Reali-Slim Bearings, RADIAL CONTACT | | | | JB S | eries ([| Double | Sealed | l) | | | | |-------------------|-------|-----------------|----------------|----------------|------------------|----------------|---------|--------------------|------------------|-------------------| | KANDON | | Dimension | s in Inches | 5 | Сарас | ities in Pou | ınds① | 1 | Torque | | | KAYDON
Bearing | S | ize | Land Dia | ameters | Dyn | amic | Static2 | Limiting
Speeds | Max. No | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | (RPM*) | Load
(in-oz)④ | lbs. | | JB020CP0 | 2.000 | 2.625 | 2.199 | 2.425 | 577 | 1,431 | 930 | 3,130 | 6 | .15 | | JB025CP0 | 2.500 | 3.125 | 2.699 | 2.925 | 644 | 1,549 | 1,140 | 2,580 | 8 | .19 | | JB030CP0 | 3.000 | 3.625 | 3.199 | 3.425 | 707 | 1,651 | 1,340 | 2,190 | 12 | .22 | | JB035CP0 | 3.500 | 4.125 | 3.699 | 3.925 | 767 | 1,743 | 1,540 | 1,900 | 16 | .27 | | JB040CP0 | 4.000 | 4.625 | 4.199 | 4.425 | 825 | 1,827 | 1,750 | 1,630 | 20 | .30 | | JB042CP0 | 4.250 | 4.875 | 4.449 | 4.675 | 846 | 1,853 | 1,830 | 1,600 | 24 | .31 | | JB045CP0 | 4.500 | 5.125 | 4.699 | 4.925 | 880 | 1,904 | 1,950 | 1,500 | 28 | .34 | | JB047CP0 | 4.750 | 5.375 | 4.949 | 5.175 | 901 | 1,928 | 2,030 | 1,430 | 32 | .35 | | JB050CP0 | 5.000 | 5.625 | 5.199 | 5.425 | 933 | 1,976 | 2,150 | 1,360 | 36 | .37 | | JB055CP0 | 5.500 | 6.125 | 5.699 | 5.925 | 984 | 2,044 | 2,360 | 1,240 | 44 | .40 | | JB060CP0 | 6.000 | 6.625 | 6.199 | 6.425 | 1,034 | 2,108 | 2,560 | 1,150 | 52 | .44 | | JB065CP0 | 6.500 | 7.125 | 6.699 | 6.925 | 1,082 | 2,168 | 2,760 | 1,060 | 61 | .47 | .375 | | | | | JU S | eries ([| ouble | Sealed | I) | | | | | |---|-------------------|--------|-----------------|----------------|----------------|------------------|----------------|------------|--------------------|------------------|-------------------|---------------------| | I | | | Dimension | s in Inches | | Capac | ities in Pou | unds① | | Torque | | | | ı | KAYDON
Bearing | Si | ze | Land Dia | meters | Dyn | amic | Static2 | Limiting
Speeds | Max. No | Approx.
Wt. in | | | ı | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | (RPM*) | Load
(in-lb)④ | lbs. | Snap-over separator | | | JU040CP0 | 4.000 | 4.750 | 4.150 | 4.543 | 1,073 | 2,321 | 2,100 | 1,640 | 2.9 | .55 | 3/16" balls | | | JU042CP0 | 4.250 | 5.000 | 4.400 | 4.793 | 1,108 | 2,370 | 2,220 | 1,520 | 3.2 | .58 | | | | JU045CP0 | 4.500 | 5.250 | 4.650 | 5.043 | 1,143 | 2,418 | 2,340 | 1,440 | 3.5 | .61 | .500 | | | JU047CP0 | 4.750 | 5.500 | 4.900 | 5.293 | 1,176 | 2,464 | 2,460 | 1,360 | 3.9 | .65 | F | | | JU050CP0 | 5.000 | 5.750 | 5.150 | 5.543 | 1,209 | 2,509 | 2,590 | 1,300 | 4.3 | .68 | .375 | | | JU055CP0 | 5.500 | 6.250 | 5.650 | 6.043 | 1,274 | 2,594 | 2,830 | 1,180 | 5.1 | .74 | .375 | | | JU060CP0 | 6.000 | 6.750 | 6.150 | 6.543 | 1,337 | 2,674 | 3,070 | 1,080 | 6.1 | .81 | .' † | | | JU065CP0 | 6.500 | 7.250 | 6.650 | 7.043 | 1,397 | 2,751 | 3,315 | 1,000 | 7.0 | .87 | | | | JU070CP0 | 7.000 | 7.750 | 7.150 | 7.543 | 1,457 | 2,823 | 3,550 | 920 | 8.1 | .93 | ⑤ F = .015 | | | JU075CP0 | 7.500 | 8.250 | 7.650 | 8.043 | 1,514 | 2,893 | 3,790 | 860 | 9.2 | .99 | Bearing corners are | | | JU080CP0 | 8.000 | 8.750 | 8.150 | 8.543 | 1,570 | 2,960 | 4,030 | 810 | 10.4 | 1.06 | normally chamfered | | | JU085CP0 | 8.500 | 9.250 | 8.650 | 9.037 | 1,624 | 3,024 | 4,270 | 770 | 11.7 | 1.12 | | | | JU090CP0 | 9.000 | 9.750 | 9.150 | 9.543 | 1,678 | 3,085 | 4,510 | 720 | 13.0 | 1.18 | | | | JU100CP0 | 10.000 | 10.750 | 10.150 | 10.543 | 1,781 | 3,203 | 4,990 | 650 | 16.0 | 1.31 | | | | JU110CP0 | 11.000 | 11.750 | 11.150 | 11.543 | 1,879 | 3,313 | 5,470 | 590 | 19.2 | 1.43 | | | | | | | | | | | | | | | | ^{3,417} ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. 5,950 540 22.8 12.750 12.150 12.543 1,974 **JU120CP0** 12.000 $^{{\}mathfrak D}$ Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ④ Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. $^{\ \, \ \, \ \, \ \, \ \, \ \, \ \,}$ F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type C - Sealed Reali-Slim Bearings, RADIAL CONTACT | | | | JG S | Series (l | Double | Sealed | i) | | | | | |-------------------|--------|-----------------|-------------|-----------|------------------|----------------|---------|--------------------|------------------|-------------------|--| | I/ DVD AN | | Dimension | ns in Inche | es | Capac | ities in Po | unds① | | Torque | | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyn | amic | Static2 | Limiting
Speeds | Max. No | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | Lı | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | (RPM*) | Load
(in-lb)4 | lbs. | | | JG070CP0 | 7.000 | 9.000 | 7.554 | 8.602 | 7,764 | 11,705 | 13,130 | 240 | 17 | 5.8 | Snap-over separator | | JG075CP0 | 7.500 | 9.500 | 8.054 | 9.102 | 7,911 | 11,835 | 13,680 | 225 | 19 | 6.1 | 1/2" balls | | JG080CP0 | 8.000 | 10.000 | 8.554 | 9.602 | 8,265 | 12,266 | 14,770 | 210 | 21 | 6.5 | 1.000 | | JG090CP0 | 9.000 | 11.000 | 9.554 | 10.602 | 8,743 | 12,782 | 16,420 | 190 | 26 | 7.2 | F — | | JG100CP0 | 10.000 | 12.000 | 10.554 | 11.602 | 9,204 | 13,261 | 18,060 | 175 | 32 | 7.9 | | | JG110CP0 | 11.000 | 13.000 |
11.554 | 12.602 | 9,648 | 13,710 | 19,700 | 160 | 38 | 8.6 | 1.000 | | JG120CP0 | 12.000 | 14.000 | 12.554 | 13.602 | 10,074 | 14,133 | 21,340 | 140 | 44 | 9.3 | | | JG140CP0 | 14.000 | 16.000 | 14.554 | 15.602 | 10,886 | 14,916 | 24,620 | 125 | 59 | 10.8 | | | JG160CP0 | 16.000 | 18.000 | 16.554 | 17.602 | 11,648 | 15,631 | 27,910 | 110 | 76 | 12.3 | $\begin{bmatrix} L_1 & & \\ & & & \end{bmatrix}$ | | JG180CP0 | 18.000 | 20.000 | 18.554 | 19.602 | 12,367 | 16,291 | 31,190 | 100 | 95 | 13.7 | Bearing corners are | | JG200CP0 | 20.000 | 22.000 | 20.554 | 21.602 | 13,044 | 16,907 | 34,470 | 90 | 115 | 15.8 | normally chamfered | | JG220CP0 | 22.000 | 24.000 | 22.554 | 23.602 | 13,685 | 17,486 | 37,760 | 80 | 139 | 16.8 | | | JG250CP0 | 25.000 | 27.000 | 25.554 | 26.602 | 14,591 | 18,295 | 42,680 | 75 | 177 | 19.5 | | | JG300CP0 | 30.000 | 32.000 | 30.554 | 31.602 | 15,963 | 19,519 | 50,890 | 60 | 252 | 23.3 | | | JG350CP0 | 35.000 | 37.000 | 35.554 | 36.602 | 17,195 | 20,622 | 59,100 | 55 | 339 | 27.1 | | | JG400CP0 | 40.000 | 42.000 | 40.554 | 41.602 | 18,307 | 21,630 | 67.310 | 50 | 440 | 30.8 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ① Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. $^{\ \, \ \, \ \, \ \, \ \, \ \,}$ (5) "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Sealed Reali-Slim Bearing Selections Type X – FOUR-POINT CONTACT A Conrad assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications. | | | | | | JHA S | eries (| Doubl | e Seal | ed) | | | | | |-------------------|-------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | | Di | mensions | in Inch | ıes | | | Capaci | ities① | | | | Torque | | | KAYDON
Bearing | S | ize | Laı
Diam | | | Dynamic | • | | Static@ | | Limiting Speeds | Max.
No Load | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | (RPM*) | (in-oz)3 | lbs. | | JHA10XL0 | 1.000 | 1.375 | 1.108 | 1.274 | 247 | 370 | 110 | 290 | 730 | 170 | 3,000 | 5 | .035 | | JHA15XL0 | 1.500 | 1.875 | 1.608 | 1.774 | 296 | 460 | 187 | 400 | 1,000 | 340 | 2,000 | 5 | .052 | | JHA17XL0 | 1.750 | 2.125 | 1.858 | 2.024 | 319 | 500 | 232 | 460 | 1,140 | 440 | 1,710 | 6 | .060 | | Snap-over separator
3/32" balls | |---| | .250 - | | .1875 | | ④ F = .015
Bearing corners are
normally chamfered | | | Di | mension | in Incl | nes | | | Capaci | ties① | | | | Torque | | |-------------------|-------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | KAYDON
Bearing | S | Size | La:
Diam | | Dynamic | | | | Static@ | | Limiting Speeds | Max.
No Load | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | (RPM*) | (in-oz)3 | lbs. | | JA020XP0 | 2.000 | 2.500 | 2.148 | 2.356 | 514 | 790 | 434 | 680 | 1,710 | 770 | 1,500 | 6 | .10 | | JA025XP0 | 2.500 | 3.000 | 2.648 | 2.856 | 583 | 910 | 601 | 830 | 2,090 | 1,150 | 1,200 | 8 | .12 | | JA030XP0 | 3.000 | 3.500 | 3.148 | 3.356 | 643 | 1,010 | 785 | 990 | 2,470 | 1,600 | 830 | 12 | .14 | | JA035XP0 | 3.500 | 4.000 | 3.648 | 3.856 | 701 | 1,110 | 986 | 1,140 | 2,850 | 2,130 | 710 | 16 | .17 | | JA040XP0 | 4.000 | 4.500 | 4.148 | 4.356 | 756 | 1,210 | 1,205 | 1,290 | 3,220 | 2,740 | 620 | 20 | .19 | | JA042XP0 | 4.250 | 4.750 | 4.398 | 4.606 | 783 | 1,260 | 1,321 | 1,370 | 3,410 | 3,070 | 580 | 24 | .20 | | JA045XP0 | 4.500 | 5.000 | 4.648 | 4.856 | 809 | 1,310 | 1,441 | 1,440 | 3,600 | 3,420 | 550 | 28 | .21 | | JA047XP0 | 4.750 | 5.250 | 4.898 | 5.106 | 834 | 1,350 | 1,565 | 1,520 | 3,790 | 3,790 | 520 | 32 | .22 | | JA050XP0 | 5.000 | 5.500 | 5.148 | 5.356 | 859 | 1,400 | 1,693 | 1,590 | 3,980 | 4,180 | 500 | 36 | .23 | | JA055XP0 | 5.500 | 6.000 | 5.648 | 5.856 | 908 | 1,480 | 1,959 | 1,750 | 4,360 | 5,020 | 450 | 44 | .25 | | JA060XP0 | 6.000 | 6.500 | 6.148 | 6.356 | 955 | 1,570 | 2,240 | 1,900 | 4,740 | 5,930 | 330 | 52 | .28 | | JA065XP0 | 6.500 | 7.000 | 6.648 | 6.856 | 1,001 | 1,650 | 2,535 | 2,050 | 5,120 | 6,910 | 300 | 61 | .30 | | JA070XP0 | 7.000 | 7.500 | 7.148 | 7.356 | 1,046 | 1,730 | 2,844 | 2,200 | 5,500 | 7,980 | 280 | 70 | .31 | | JA075XP0 | 7.500 | 8.000 | 7.648 | 7.856 | 1,089 | 1,810 | 3,165 | 2,350 | 5,880 | 9,120 | 260 | 80 | .34 | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. ④ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type X - Sealed Reali-Slim Bearings, FOUR-POINT CONTACT | | | | | | JB Se | ries ([| Double | Seale | ed) | | | | | | |-------------------|----------------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------------------|---------------------------------| | | Dimensions in Inches | | | | | Capaci | ities① | | | | Torque | | | | | KAYDON
Bearing | S | ize | La
Diam | | | Dynamic | : | | Static2 | | Limiting Speeds | Max. | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | (RPM*) | No Load
(in-oz)③ | lbs. | Snap-over separator 5/32" balls | | JB020XP0 | 2.000 | 2.625 | 2.199 | 2.425 | 758 | 1,130 | 658 | 930 | 2,340 | 1,080 | 1,500 | 6 | .15 | .3125- | | JB025XP0 | 2.500 | 3.125 | 2.699 | 2.925 | 848 | 1,290 | 895 | 1,140 | 2,840 | 1,600 | 1,200 | 8 | .19 | F _ \ | | JB030XP0 | 3.000 | 3.625 | 3.199 | 3.425 | 933 | 1,440 | 1,159 | 1,340 | 3,350 | 2,220 | 1,000 | 12 | .22 | .3125 | | JB035XP0 | 3.500 | 4.125 | 3.699 | 3.925 | 1,014 | 1,590 | 1,450 | 1,540 | 3,860 | 2,940 | 710 | 16 | .27 | .3125 | | JB040XP0 | 4.000 | 4.625 | 4.199 | 4.425 | 1,091 | 1,720 | 1,764 | 1,750 | 4,370 | 3,770 | 620 | 20 | .30 | L ₂ | | JB042XP0 | 4.250 | 4.875 | 4.449 | 4.675 | 1,120 | 1,780 | 1,917 | 1,830 | 4,570 | 4,170 | 590 | 24 | .31 | 4) F = .040 | | JB045XP0 | 4.500 | 5.125 | 4.699 | 4.925 | 1,165 | 1,850 | 2,103 | 1,950 | 4,880 | 4,690 | 550 | 28 | .34 | Bearing corners are | | JB047XP0 | 4.750 | 5.375 | 4.949 | 5.175 | 1,193 | 1,900 | 2,265 | 2,030 | 5,080 | 5,140 | 520 | 32 | .35 | normally chamfered | | JB050XP0 | 5.000 | 5.625 | 5.199 | 5.425 | 1,236 | 1,980 | 2,463 | 2,150 | 5,380 | 5,720 | 500 | 36 | .37 | | | JB055XP0 | 5.500 | 6.125 | 5.699 | 5.925 | 1,304 | 2,100 | 2,844 | 2,360 | 5,890 | 6,850 | 450 | 44 | .40 | | | JB060XP0 | 6.000 | 6.625 | 6.199 | 6.425 | 1,371 | 2,220 | 3,247 | 2,560 | 6,400 | 8,080 | 410 | 52 | .44 | | | JB065XP0 | 6.500 | 7.125 | 6.699 | 6.925 | 1,435 | 2,340 | 3,668 | 2,760 | 6,910 | 9,410 | 380 | 61 | .47 | | | | | | | | JU Se | eries ([| Double | Seale | ed) | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|------------------------------------| | | Din | nension: | s in Inch | ies | Capacities ① | | | | | | | Torque | | | | KAYDON
Bearing | Si | ze | Laı
Diam | | | Dynamic | | | Static@ | | Limiting Speeds | Max.
No Load | Approx.
Wt. in | | | Number | Bore (| Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | (RPM*) | (in-lb)③ | lbs. | | | JU040XP0 | 4.000 | 4.750 | 4.150 | 4.543 | 1,417 | 2,210 | 2,326 | 2,100 | 5,260 | 4,600 | 620 | 2.9 | .55 | C | | JU042XP0 | 4.250 | 5.000 | 4.400 | 4.793 | 1,464 | 2,290 | 2,541 | 2,220 | 5,560 | 5,140 | 590 | 3.2 | .58 | Snap-over separator
3/16" balls | | JU045XP0 | 4.500 | 5.250 | 4.650 | 5.043 | 1,510 | 2,380 | 2,762 | 2,340 | 5,860 | 5,710 | 550 | 3.5 | .61 | 1 1 | | JU047XP0 | 4.750 | 5.500 | 4.900 | 5.293 | 1,556 |
2,460 | 2,991 | 2,460 | 6,160 | 6,320 | 520 | 3.9 | .65 | .500 F | | JU050XP0 | 5.000 | 5.750 | 5.150 | 5.543 | 1,600 | 2,540 | 3,226 | 2,590 | 6,460 | 6,950 | 500 | 4.3 | .68 | .375 | | JU055XP0 | 5.500 | 6.250 | 5.650 | 6.043 | 1,687 | 2,690 | 3,717 | 2,830 | 7,060 | 8,300 | 450 | 5.1 | .74 | 1 7 | | JU060XP0 | 6.000 | 6.750 | 6.150 | 6.543 | 1,770 | 2,840 | 4,234 | 3,070 | 7,660 | 9,770 | 410 | 6.1 | .81 | L ₂ T | | JU065XP0 | 6.500 | 7.250 | 6.650 | 7.043 | 1,851 | 2,990 | 4,775 | 3,310 | 8,270 | 11,370 | 380 | 7.0 | .87 | ④ F = .015 | | JU070XP0 | 7.000 | 7.750 | 7.150 | 7.543 | 1,931 | 3,130 | 5,341 | 3,550 | 8,870 | 13,080 | 350 | 8.1 | .93 | Bearing corners are | | JU075XP0 | 7.500 | 8.250 | 7.650 | 8.043 | 2,007 | 3,270 | 5,930 | 3,790 | 9,470 | 14,910 | 330 | 9.2 | .99 | normally chamfered | | JU080XP0 | 8.000 | 8.750 | 8.150 | 8.543 | 2,082 | 3,410 | 6,542 | 4,030 | 10,070 | 16,870 | 310 | 10.4 | 1.06 | | | JU085XP0 | 8.500 | 9.250 | 8.650 | 9.043 | 2,155 | 3,543 | 7,176 | 4,270 | 10,670 | 18,940 | 265 | 11.7 | 1.12 | | | JU090XP0 | 9.000 | 9.750 | 9.150 | 9.543 | 2,226 | 3,670 | 7,830 | 4,510 | 11,270 | 21,130 | 220 | 13.0 | 1.18 | | | JU100XP0 | 10.000 | 10.750 | 10.150 | 10.543 | 2,364 | 3,930 | 9,201 | 4,990 | 12,470 | 25,880 | 200 | 16.0 | 1.31 | | | JU110XP0 | 11.000 | 11.750 | 11.150 | 11.543 | 2,496 | 4,180 | 10,651 | 5,470 | 13,680 | 31,110 | 180 | 19.2 | 1.43 | | | JU120XP0 | 12.000 | 12.750 | 12.150 | 12.543 | 2,622 | 4,420 | 12,174 | 5,950 | 14,880 | 36,830 | 160 | 22.8 | 1.56 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]textcircled{2} \ \ \mathsf{Static} \ \mathsf{capacities} \ \mathsf{are} \ \mathsf{non-brinell} \ \mathsf{limits} \ \mathsf{based} \ \mathsf{on} \ \mathsf{rigid} \ \mathsf{support} \ \mathsf{from} \ \mathsf{the} \ \mathsf{shaft} \ \mathsf{and} \ \mathsf{housing}.$ ³ Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. ④ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type X – Sealed Reali-Slim Bearings, FOUR-POINT CONTACT | | | | | | | JG Se | eries | | | | | | | | |----------------------|--------|-----------------|----------------|----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------------------|-----------------------------------| | Dimensions in Inches | | | | | | Capacities ① | | | | | | | | | | KAYDON
Bearing | Si | ize | Land Dia | ameters | | Dynami | c | | Static@ | | Limiting Speeds | Torque
Max. | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | (RPM*) | No Load
(in-lb)③ | lbs. | Snap-over separator | | JG070XP0 | 7.000 | 9.000 | 7.554 | 8.602 | 10,208 | 15,400 | 30,636 | 13,130 | 32,830 | 52,530 | 240 | 17 | 5.8 | 1/2" balls | | JG075XP0 | 7.500 | 9.500 | 8.054 | 9.102 | 10,410 | 15,820 | 33,196 | 13,680 | 34,200 | 58,140 | 225 | 19 | 6.1 | 1.000 | | JG080XP0 | 8.000 | 10.000 | 8.554 | 9.602 | 10,882 | 16,650 | 36,743 | 14,770 | 36,940 | 66,480 | 210 | 21 | 6.5 | F | | JG090XP0 | 9.000 | 11.000 | 9.554 | 10.602 | 11,526 | 17,870 | 43,240 | 16,420 | 41,040 | 82,080 | 190 | 26 | 7.2 | | | JG100XP0 | 10.000 | 12.000 | 10.554 | 11.602 | 12,147 | 19,040 | 50,124 | 18,060 | 45,140 | 99,320 | 175 | 32 | 7.9 | 1.000 | | JG110XP0 | 11.000 | 13.000 | 11.554 | 12.602 | 12,739 | 20,180 | 57,347 | 19,700 | 49,250 | 118,200 | 160 | 38 | 8.6 | | | JG120XP0 | 12.000 | 14.000 | 12.554 | 13.602 | 13,315 | 21,280 | 64,935 | 21,340 | 53,350 | 138,700 | 140 | 44 | 9.3 | L | | JG140XP0 | 14.000 | 16.000 | 14.554 | 15.602 | 14,404 | 34,410 | 81,056 | 24,620 | 61,560 | 184,700 | 125 | 59 | 10.8 | -1 | | JG160XP0 | 16.000 | 18.000 | 16.554 | 17.602 | 15,425 | 25,450 | 98,373 | 27,910 | 69,770 | 237,200 | 110 | 76 | 12.3 | | | JG180XP0 | 18.000 | 20.000 | 18.554 | 19.602 | 16,386 | 27,410 | 116,793 | 31,190 | 77,980 | 296,300 | 100 | 95 | 13.7 | ④ F = .080
Bearing corners are | | JG200XP0 | 20.000 | 22.000 | 20.554 | 21.602 | 17,293 | 29,300 | 136,238 | 34,470 | 86,180 | 362,000 | 90 | 115 | 15.8 | normally chamfered | | JG220XP0 | 22.000 | 24.000 | 22.554 | 23.602 | 18,152 | 31,130 | 156,625 | 37,750 | 94,390 | 434,200 | 80 | 138 | 16.8 | • | | JG250XP0 | 25.000 | 27.000 | 25.554 | 26.602 | 19,360 | 33,780 | 188,838 | 42,680 | 106,700 | 554,900 | 75 | 177 | 19.5 | | | JG300XP0 | 30.000 | 32.000 | 30.554 | 31.602 | 21,200 | 37,980 | 246,541 | 50,890 | 127,200 | 788,800 | 60 | 252 | 23.3 | | | JG350XP0 | 35.000 | 37.000 | 35.554 | 36.602 | 22,845 | 41,970 | 308,527 | 59,100 | 147,700 | 1,064,000 | 55 | 339 | 27.1 | | | JG400XP0 | 40.000 | 42.000 | 40.554 | 41.602 | 24,332 | 45,770 | 374,256 | 63,310 | 168,300 | 1,380,000 | 50 | 440 | 30.8 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 **Need Service Fast?** 1-800-514-3066 www.kaydonbearings.com ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ⁽a) Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. ④ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ## Precision Tolerances and Recommended Fits for Reali-Slim Ball Bearings in Normal Applications | Type C – Precision Class 1 (Ref. ABEC 1F) | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|--------------------------|---------------|--|--------------------------------------|------|------------------------|-------------------|------------------|---------------------------|--------------| | Bearing | Bearing
Diameters | | Radial & Axial
Runout | | Rotating
Duplex DF | Shaft or
Mounting | | Stationar
Duplex DB | Bearing Diametral | | | | | Size
(Inch
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
–.0000 | | iameter
ninal | | ng Bore
ninal | Cleara
Befo
Install | ince*
ore | | 010 | 0004 | 0005 | .0005 | .0008 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0016 | | 015 | 0005 | 0005 | .0006 | .0008 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0012 | .0018 | | 017 | 0006 | 0005 | .0008 | .0010 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0024 | | 020 | 0006 | 0005 | .0008 | .0010 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0024 | | 025 | 0006 | 0005 | .0008 | .0010 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0024 | | 030 | 0006 | 0006 | .0008 | .0010 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0024 | | 035 | 0008 | 0006 | .0010 | .0012 | +.0008 | +.0006 | 0008 | 0016 | 0006 | 0012 | .0016 | .0028 | | 040 | 0008 | 0006 | .0010 | .0012 | +.0008 | +.0006 | 0008 | 0016 | 0006 | 0012 | .0016 | .0028 | | 042 | 0008 | 0008 | .0010 | .0014 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0028 | | 045 | 0008 | 0008 | .0010 | .0014 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0028 | | 047 | 0010 | 0008 | .0012 | .0014 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0020 | .0034 | | 050 | 0010 | 0008 | .0012 | .0014 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0020 | .0034 | | 055 | 0010 | 0010 | .0012 | .0016 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0034 | | 060 | 0010 | 0010 | .0012 | .0016 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0034 | | 065 | 0010 | 0010 | .0012 | .0016 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0034 | | 070 | 0010 | 0012 | .0012 | .0016 | +.0010 | +.0012 | 0010 | 0020 | 0012 | 0024 | .0024 | .0042 | | 075 | 0012 | 0012 | .0016 | .0018 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0042 | | 080 | 0012 | 0012 | .0016 | .0018 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0042 | | 090 | 0012 | 0012 | .0016 | .0018 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0042 | | 100 | 0014 | 0014 | .0018 | .0020 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0048 | | 110 | 0014 | 0014 | .0018 | .0020 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0048 | | 120 | 0014 | 0014 | .0018 | .0020 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0048 | | 140 | 0016 | 0016 | .0018 | .0020 | +.0016 | +.0016 | 0016 | 0032 | 0016 | 0032 | .0032 | .0052 | | 160 | 0018 | 0018 | .0018 | .0020 | +.0018 | +.0018 | 0018 | 0036 | 0018 | 0036 | .0036 | .0056 | | 180 | 0018 | 0018 | .0020 | .0020 | +.0018 | +.0018 | 0018 | 0036 | 0018 | 0036 | .0036 | .0056 | | 200 | 0020 | 0020 | .0020 | .0020 | +.0020 | +.0020 | 0020 | 0040 | -0020 | 0040 | .0040 | .0060 | | 210 | 0020 | 0020 | .0020 | .0020 | +.0020 | +.0020 | 0020 | 0040 | -0020 | 0040 | .0040 | .0060 | | 220 | 0020 | 0020 | .0020 | .0020 | +.0020 | +.0020 | 0020 | 0040 | -0020 | 0040 | .0040 | .0060 | | 250 | 0030
 0030 | .0020 | .0020 | +.0030 | +.0030 | 0030 | 0060 | 0030 | 0060 | .0060 | .0080 | | 300 | 0030 | 0030 | .0020 | .0020 | +.0030 | +.0030 | 0030 | 0060 | 0030 | 0060 | .0060 | .0080 | | 350 | 0040 | 0040 | .0020 | .0020 | +.0040 | +.0040 | 0040 | 0080 | 0040 | 0080 | .0080 | .0100 | | 400 | 0040 | 0040 | .0020 | .0020 | +.0040 | +.0040 | 0040 | 0080 | 0040 | 0080 | .0080 | .0100 | | | | | | | | | | | | | | | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Race Width Tolerance: Up thru 12" Bearing Bore Over 12" Bearing Bore +.000 -.005 +.000 -.010 Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. All dimensions in inches. ### Precision Tolerances and Recommended Fits for Reali-Slim Bearings (continued) | | | | Туре | X and | X and A – Precision Class 1 (Ref. ABEC 1F) | | | | | | | | | | | |--------------------------|--------------------------------------|--------------------------------------|--------------------------|---------------|--|--------------------------------------|------|------------------------|-------------------|------------------|---|-------|--|--|--| | Bearing | Bearing
ing Diameters | | Radial & Axial
Runout | | Rotating
Duplex DF | Shaft or
Mounting | | Stational
Duplex DB | Bearing Diametral | | | | | | | | Size
(Inch
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
–.0000 | | iameter
ninal | | ng Bore
ninal | Clearance*
(Type "X" only)
Before
Installation | | | | | | 010 | 0004 | 0005 | .0003 | .0004 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0015 | | | | | 015 | 0005 | 0005 | .0004 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0012 | .0017 | | | | | 017 | 0006 | 0005 | .0005 | .0005 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0022 | | | | | 020 | 0006 | 0005 | .0005 | .0005 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0022 | | | | | 025 | 0006 | 0005 | .0005 | .0005 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0022 | | | | | 030 | 0006 | 0006 | .0006 | .0006 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0022 | | | | | 035 | 0008 | 0006 | .0006 | .0006 | +.0008 | +.0006 | 0008 | 0016 | 0006 | 0012 | .0016 | .0026 | | | | | 040 | 0008 | 0006 | .0006 | .0006 | +.0008 | +.0006 | 0008 | 0016 | 0006 | 0012 | .0016 | .0026 | | | | | 042 | 0008 | 0008 | .0008 | .0008 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0026 | | | | | 045 | 0008 | 0008 | .0008 | .0008 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0026 | | | | | 047 | 0010 | 0008 | .0008 | .0008 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0020 | .0030 | | | | | 050 | 0010 | 0008 | .0008 | .0008 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0020 | .0030 | | | | | 055 | 0010 | 0010 | .0010 | .0010 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0030 | | | | | 060 | 0010 | 0010 | .0010 | .0010 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0030 | | | | | 065 | 0010 | 0010 | .0010 | .0010 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0020 | .0030 | | | | | 070 | 0010 | 0012 | .0010 | .0010 | +.0010 | +.0012 | 0010 | 0020 | 0012 | 0024 | .0024 | .0034 | | | | | 075 | 0012 | 0012 | .0012 | .0012 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0034 | | | | | 080 | 0012 | 0012 | .0012 | .0012 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0034 | | | | | 090 | 0012 | 0012 | .0012 | .0012 | +.0012 | +.0012 | 0012 | 0024 | 0012 | 0024 | .0024 | .0034 | | | | | 100 | 0014 | 0014 | .0014 | .0014 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0038 | | | | | 110 | 0014 | 0014 | .0014 | .0014 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0038 | | | | | 120 | 0014 | 0014 | .0014 | .0014 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0038 | | | | | 140 | 0014 | 0014 | .0014 | .0014 | +.0014 | +.0014 | 0014 | 0028 | 0014 | 0028 | .0028 | .0038 | | | | | 160 | 0016 | 0016 | .0016 | .0016 | +.0016 | +.0016 | 0016 | 0032 | 0016 | 0032 | .0032 | .0042 | | | | | 180 | 0016 | 0016 | .0016 | .0016 | +.0016 | +.0016 | 0016 | 0032 | 0016 | 0032 | .0032 | .0042 | | | | | 200 | 0018 | 0018 | .0018 | .0018 | +.0018 | +.0018 | 0018 | 0036 | -0018 | 0036 | .0036 | .0046 | | | | | 210 | 0018 | 0018 | .0018 | .0018 | +.0018 | +.0018 | 0018 | 0036 | -0018 | 0036 | .0036 | .0046 | | | | | 220 | 0018 | 0018 | .0018 | .0018 | +.0018 | +.0018 | 0018 | 0036 | -0018 | 0036 | .0036 | .0046 | | | | | 250 | 0018 | 0018 | .0018 | .0018 | +.0018 | +.0018 | 0018 | 0036 | 0018 | 0036 | .0036 | .0046 | | | | | 300 | 0018 | 0018 | .0018 | .0018 | +.0018 | +.0018 | 0018 | 0036 | 0018 | 0036 | .0036 | .0046 | | | | | 350 | 0020 | 0020 | .0020 | .0020 | +.0020 | +.0020 | 0020 | 0040 | 0020 | 0040 | .0040 | .0050 | | | | | 400 | 0020 | 0020 | .0020 | .0020 | +.0020 | +.0020 | 0020 | 0040 | 0020 | 0040 | .0040 | .0050 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. All dimensions in inches. Total Width Tolerance—Duplexed Type A Bearings: Up thru 12" Bearing Bore +.000 –.010 Over 12" Bearing Bore +.000 –.020 Race Width Tolerance—Single Type C, X, A Bearings: Up thru 12" Bearing Bore +.000 -.005 Over 12" Bearing Bore +.000 -.010 | | | | Туре | C, X an | d A – Pre | ecision (| Class 3 (| Ref. AB | EC 3F) | | | | |--------------------------|--------------------------------------|--------------------------------------|---------------|-----------------|--|--------------------------------------|-----------|-------------------|---------------------------|------------------|-----------|------------------------------------| | Bearing | | ring
eters | | & Axial
10ut | | Shaft or
Mounting | | | ry Shaft or
B Mounting | | Clear | Diametral
rance* | | Size
(Inch
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
–.0000 | | Diameter
ninal | | ng Bore
ninal | "C"
Be | "X"and
only)
fore
llation | | 010 | 0002 | 0003 | .0003 | .0004 | +.0002 | +.0003 | 0002 | 0004 | 0003 | 0006 | .0007 | .0011 | | 015 | 0003 | 0003 | .0004 | .0004 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0008 | .0012 | | 017 | 0004 | 0004 | .0004 | .0005 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0018 | | 020 | 0004 | 0004 | .0004 | .0005 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0018 | | 025 | 0004 | 0004 | .0004 | .0005 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0018 | | 030 | 0004 | 0004 | .0004 | .0006 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0018 | | 035 | 0005 | 0004 | .0005 | .0006 | +.0005 | +.0004 | 0005 | 0010 | 0004 | 0008 | .0010 | .0020 | | 040 | 0005 | 0004 | .0005 | .0006 | +.0005 | +.0004 | 0005 | 0010 | 0004 | 0008 | .0010 | .0020 | | 042 | 0005 | 0005 | .0005 | .0008 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0020 | | 045 | 0005 | 0005 | .0005 | .0008 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0020 | | 047 | 0006 | 0005 | .0006 | .0008 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0022 | | 050 | 0006 | 0005 | .0006 | .0008 | +.0006 | +.0005 | 0006 | 0012 | 0005 | 0010 | .0012 | .0022 | | 055 | 0006 | 0006 | .0006 | .0009 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0022 | | 060 | 0006 | 0006 | .0006 | .0009 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0022 | | 065 | 0006 | 0006 | .0006 | .0009 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0022 | | 070 | 0006 | 0007 | .0006 | .0010 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0014 | .0024 | | 075 | 0007 | 0007 | .0008 | .0010 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0014 | .0024 | | 080 | 0007 | 0007 | .0008 | .0010 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0014 | .0024 | | 090 | 0007 | 0007 | .0008 | .0010 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0014 | .0024 | | 100 | 0008 | 0008 | .0010 | .0012 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0026 | | 110 | 0008 | 0008 | .0010 | .0012 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0016 | .0026 | | 120 | 0008 | 0009 | .0010 | .0014 | +.0008 | +.0009 | 0008 | 0016 | 0009 | 0018 | .0018 | .0028 | | 140 | 0008 | 0009 | .0012 | .0014 | +.0008 | +.0009 | 0008 | 0016 | 0009 | 0018 | .0018 | .0028 | | 160 | 0009 | 0010 | .0014 | .0016 | +.0009 | +.0010 | 0009 | 0018 | 0010 | 0020 | .0020 | .0030 | | 180 | 0009 | 0010 | .0014 | .0016 | +.0009 | +.0010 | 0009 | 0018 | 0010 | 0020 | .0020 | .0030 | | 200 | 0010 | 0012 | .0016 | .0018 | +.0010 | +.0012 | 0010 | 0020 | 0012 | 0024 | .0024 | .0034 | | | | | | | | | | | | | | | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing,
housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: $either of their extremes. \ Diametral \ clearances \ shown \ do \ not \ apply \ to \ Type \ A \ (angular \ contact) \ bearings.$ Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. #### All dimensions in inches. +.000 -.010 Up thru 12" Bearing Bore Over 12" Bearing Bore +.000 -.020 | | | | Ţ | ype C, | X and <i>I</i> | A – Pre | ecision | Class 4 | (Ref. | ABEC 5 | F) | | | | |--------------------------|-------------------|-------------------|--------|------------|----------------|---------|-----------------------|----------------------|---------|-----------------------|-------------------------|---------|-------|-------------------------| | Bearing | | ring
eters | R | Radial & A | xial Runou | t | Rotating
Duplex DF | Shaft or
Mounting | | Stationa
Duplex DE | ry Shaft o
B Mountin | | Clear | Diametral
rance* | | Size
(Inch
Series) | Bearing
Bore | Bearing
0.D. | Inner | Race | Outer | Race | Shaft
Diameter | Housing
Bore | Shaft [|)iameter | Housi | ng Bore | "C" | "X"and
only)
fore | | Jenes, | Nominal
+.0000 | Nominal
+.0000 | Radial | Axial | Radial | Axial | Nominal
0000 | Nominal
0000 | Nor | ninal | Nor | ninal | | llation | | 010 | 0002 | 0002 | .0002 | .0003 | .0002 | .0003 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0005 | .0009 | | 015 | 0002 | 0002 | .0002 | .0003 | .0002 | .0003 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0005 | .0009 | | 017 | 0003 | 0003 | .0002 | .0003 | .0003 | .0004 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 020 | 0003 | 0003 | .0002 | .0003 | .0003 | .0004 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 025 | 0003 | 0003 | .0002 | .0003 | .0003 | .0004 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 030 | 0003 | 0003 | .0002 | .0003 | .0004 | .0005 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 035 | 0003 | 0003 | .0003 | .0004 | .0004 | .0005 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 040 | 0003 | 0003 | .0003 | .0004 | .0004 | .0005 | +.0003 | +.0003 | 0003 | 0006 | 0003 | 0006 | .0006 | .0012 | | 042 | 0003 | 0004 | .0003 | .0004 | .0004 | .0005 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 045 | 0003 | 0004 | .0003 | .0004 | .0004 | .0005 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 047 | 0004 | 0004 | .0003 | .0004 | .0004 | .0005 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0014 | | 050 | 0004 | 0004 | .0003 | .0004 | .0004 | .0005 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0014 | | 055 | 0004 | 0005 | .0003 | .0004 | .0005 | .0006 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0016 | | 060 | 0004 | 0005 | .0003 | .0004 | .0005 | .0006 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0016 | | 065 | 0004 | 0005 | .0003 | .0004 | .0005 | .0006 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0016 | | 070 | 0004 | 0005 | .0003 | .0004 | .0005 | .0006 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0010 | .0016 | | 075 | 0005 | 0005 | .0004 | .0005 | .0005 | .0006 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 080 | 0005 | 0005 | .0004 | .0005 | .0005 | .0006 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 090 | 0005 | 0005 | .0004 | .0005 | .0005 | .0006 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 100 | 0005 | 0005 | .0005 | .0006 | .0006 | .0007 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 110 | 0005 | 0005 | .0005 | .0006 | .0006 | .0007 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 120 | 0005 | 0006 | .0005 | .0006 | .0007 | .0008 | +.0005 | +.0006 | 0005 | 0010 | 0006 | 0012 | .0012 | .0018 | | 140 | 0006 | 0006 | .0005 | .0007 | .0007 | .0008 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0012 | .0018 | | 160 | 0006 | 0007 | .0007 | .0008 | .0008 | .0009 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0014 | .0020 | | 180 | 0006 | 0007 | .0007 | .0008 | .0008 | .0009 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0014 | .0020 | | 200 | 0007 | 0008 | .0008 | .0009 | .0009 | .0010 | +.0007 | +.0008 | 0006 | 0014 | 0007 | 0016 | .0016 | .0022 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. #### All dimensions in inches. Total Width Tolerance—Duplexed Type A Bearings: Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 | | | | Туре | C, X an | d A – Pre | cision (| Class 6 (| Ref. AB | EC 7F) | | | | |--------------------------|--------------------------------------|--------------------------------------|---------------|-----------------|--|--------------------------------------|-----------|------------------|---------------------------|------------------|-----------|------------------------------------| | Bearing | | ring
leters | | & Axial
rout | Rotating
Duplex DF | Shaft or
Mounting | | | ry Shaft or
B Mounting | | | Diametral
ance* | | Size
(Inch
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
–.0000 | | iameter
ninal | | ng Bore
ninal | "C"
Be | "X"and
only)
fore
llation | | 010 | 00015 | 0002 | .00015 | .0002 | +.00015 | +.0002 | 00015 | 0003 | 0002 | 0004 | .0004 | .0008 | | 015 | 0002 | 0002 | .00015 | .0002 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0004 | .0008 | | 017 | 0002 | 0002 | .00015 | .0002 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0004 | .0010 | | 020 | 0002 | 0002 | .00015 | .0002 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0004 | .0010 | | 025 | 0002 | 0002 | .00015 | .0002 | +.0002 | +.0002 | 0002 | 0004 | 0002 | 0004 | .0004 | .0010 | | 030 | 0002 | 0003 | .00015 | .0002 | +.0002 | +.0003 | 0002 | 0004 | 0003 | 0006 | .0006 | .0012 | | 035 | 00025 | 0003 | .0002 | .0002 | +.00025 | +.0003 | 00025 | 0005 | 0003 | 0006 | .0006 | .0012 | | 040 | 00025 | 0003 | .0002 | .0002 | +.00025 | +.0003 | 00025 | 0005 | 0003 | 0006 | .0006 | .0012 | | 042 | 00025 | 0004 | .0002 | .0003 | +.00025 | +.0004 | 00025 | 0005 | 0004 | 0008 | .0008 | .0014 | | 045 | 00025 | 0004 | .0002 | .0003 | +.00025 | +.0004 | 00025 | 0005 | 0004 | 0008 | .0008 | .0014 | | 047 | 0003 | 0004 | .0003 | .0003 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 050 | 0003 | 0004 | .0003 | .0003 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 055 | 0003 | 0004 | .0003 | .0003 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 060 | 0003 | 0004 | .0003 | .0003 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 065 | 0003 | 0004 | .0003 | .0003 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 070 | 0003 | 0004 | .0003 | .0004 | +.0003 | +.0004 | 0003 | 0006 | 0004 | 0008 | .0008 | .0014 | | 075 | 0004 | 0004 | .0003 | .0004 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0014 | | 080 | 0004 | 0004 | .0003 | .0004 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0014 | | 090 | 0004 | 0004 | .0003 | .0004 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0008 | .0014 | | 100 | 0005 | 0005 | .0004 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 110 | 0005 | 0005 | .0004 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 120 | 0005 | 0005 | .0004 | .0005 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0010 | .0016 | | 140 | 0005 | 0006 | .0004 | .0005 | +.0005 | +.0006 | 0005 | 0010 | 0006 | 0012 | .0012 | .0018 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: $either of their extremes. \ Diametral \ clearances shown do \ not apply to \ Type \ A \ (angular \ contact) \ bearings.$ Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired Race Width Tolerance—Single Type C, X, A Bearings: performance characteristics. Contact Kaydon for design assistance when required. Up thru 12" Bearing Bore +.000 -.010 +.000 -.020 Over 12" Bearing Bore > Up thru 12" Bearing Bore +.000 -.005 > Over 12" Bearing Bore +.000 -.010 #### All dimensions in inches. # Endurakote Plating for Corrosion-Resistant Bearings (Series L, N) #### Introduction Endurakote plating protects bearings from corrosion and provides substantial life improvements in hostile environments. Endurakote plating is applied over conventional bearing materials such as AISI 52100 steel, and offers the benefit of corrosion resistance normally found only in stainless steel bearings. The coating is applied to each entire bearing race ring, including the paths, thus leaving no area exposed. Other commercial chrome or cadmium coatings normally accepted and used cannot be
applied to the path due to the rolling contact stresses. Endurakote plating is hard chromium, electrodeposited by a proprietary process which achieves a true molecular bond, and will not flake or peel even under the high contact stresses experienced in the bearing paths. Laboratory and field testing results have proven the benefits of this process. Severe salt spray testing has shown that bearings with Endurakote plating withstand corrosion as well as or better than AISI 440C stainless steel. The hard, dense exterior surface formed by the coating is extremely wear resistant and is excellent in the retention of the lubricant film. Conventional life testing of AISI 52100 steel bearings with Endurakote plating has shown that no life de-rating is necessary. In fact, the extremely hard surface of Endurakote plating protects the bearing from surface generated damage which can promote premature failure. Since the coating is capable of withstanding extremely high temperatures, the bearings are limited by the bearing materials or lubricant used. The coating used for Endurakote plating can be applied to any type of bearing and to most bearing materials. Its primary advantage is to utilize stock materials such as AISI 52100, etc. with their economies, and convert them to wear and corrosion resistant bearings. This is particularly beneficial for larger diameter bearings or where quick delivery is critical. Thus, cost savings can be achieved over more exotic or specialized materials. Also, stock bearings can have Endurakote plating applied for quick delivery. The net result is that we can offer bearings with the capacity of conventional bearing steels and the corrosion resistance of AISI 440C stainless steel from standard AISI 52100 stock components. #### **Application** Endurakote plating provides corrosion resistance and is effective in increasing wear resistance in sliding surface contacts such as the lands where the cage pilots. The micro-surface composition of Endurakote plating aids in lubricant dispersion, enhancing base metals to the degree of reducing or eliminating galling, seizing, and high friction, over a wide range of installations and environments. #### **Advantages** Endurakote plating effects a buildup of less than .0002 under normal circumstances. Thus, it can often be applied to stock bearing components which have been specially selected. Endurakote plating is compatible with most ferrous and nonferrous metal, allowing maximum flexibility in selection of base material. Endurakote plating is normally a final process, and its quality is constant with any given base metal, insuring design reproducibility. #### **Properties and Characteristics** #### A. Hardness Endurakote plating, as deposited, has an equivalent hardness in excess of 70 Rockwell "C." When measured by conventional micro-hardness methods, the host material will modify this measurement to some degree. #### **B. Coefficient of Friction** (Note: Measurements made at 72°F, using other materials for comparison.) | Material | Against Material | Static | _ | Sliding | |---------------|--------------------|--------|---|---------| | Steel | Steel | 0.30 | _ | 0.20 | | Steel | Brass, Bronze | 0.25 | _ | 0.20 | | Steel | Endurakote plating | 0.17 | _ | 0.16 | | Brass, Bronze | Endurakote plating | 0.15 | _ | 0.13 | | Endurakote | Endurakote plating | 0.14 | _ | 0.12 | #### **Endurakote Plating (continued)** #### C. Adhesion Endurakote plating will not flake, crack, chip, peel or otherwise separate from the base material under standard bend tests or under conditions where severe heat is induced. The adherence is adequate to withstand the extremely high compressive stresses in the contact areas of ball and roller bearings. #### D. Effect On Base The purity of the chromium surface will not be less than 99% as deposited. A comprehensive testing program at Kaydon established that bearings with Endurakote plating exhibited load carrying capacities and life expectancy equal to or better than uncoated AISI 52100 steel bearings. #### **E. Corrosion Resistance** Endurakote plating resists attack by most organic and inorganic compounds with a pH within the range of 4 and 11, except sulfuric and hydrochloric acids. Porosity of the base metal, compound concentration and exposure time to the compound become corrosion factors, but Endurakote plating greatly enhances the base material. In severe salt spray tests as well as tap water immersion tests, AISI 52100 steel with Endurakote plating proved equal to fully hardened AISI 440C stainless steel in resistance to rusting. In many instances, Endurakote plating is better for corrosion protection than cadmium plate, zinc plate, phosphates, chromates, black oxide or normal chrome plate. We invite inquiries about this and will be pleased to arrange tests to qualify Endurakote plating for specific environments. #### F. Heat Resistance Reali-Slim bearings with Endurakote plating are designed to maintain their operating characteristics over a temperature range from -65°F to 250°F. #### **G. Surface Quality** Endurakote plating conforms to the texture of the existing surface. Ra finish will be improved slightly down to about 8 Ra; below 4 Ra there is little change. Endurakote plating has a matte or micro-orange peel surface with very good lubricant retention qualities. #### **H. Food Industries** Endurakote plating is used on food processing equipment. #### **I. Load Capacity** Endurakote plating does not affect the static or dynamic load capacity of the bearing. These values can be found by looking up the corresponding part number — starting with "K" — in the standard Reali-Slim bearing tables. #### **Bearing Size Capabilities** Endurakote plating can be applied to any Reali-Slim bearing. #### Restrictions Kaydon does not recommend the use of Endurakote plating in any low torque or torque-sensitive applications. # Open Endurakote-Plated Endura-Slim® Bearing Selections Type A – ANGULAR CONTACT A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snap-over assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. Matched sets are available. Kaydon also offers matched spacers for applications requiring extra precision. | | | | | | NAA Se | ries | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|--------|--------|-------------------| | I/ AVP ON | | Dimer | nsions in l | nches | | | Capaci | ties in Po | unds① | | | | KAYDON | Si | ize | Lan | d Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | NAA10AG0 | 1.0000 | 1.3752 | 1.140 | 1.235 | 1.274 | 194 | 590 | 450 | 340 | 970 | .025 | | NAA15AG0 | 1.5000 | 1.8752 | 1.640 | 1.735 | 1.774 | 238 | 681 | 560 | 480 | 1,380 | .038 | | NAA17AG0 | 1.7500 | 2.1252 | 1.890 | 1.985 | 2.024 | 251 | 697 | 600 | 530 | 1,520 | .045 | | | | | | | NA Ser | ies | | | | | | |-------------------|---------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|--------|-------------------| | KANDON | | Dimei | nsions in I | nches | | | Capaci | ties in Po | unds① | | | | KAYDON
Bearing | S | ize | Lar | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | NA020AR0 | 2.0000 | 2.5002 | 2.186 | 2.314 | 2.369 | 405 | 1,065 | 960 | 790 | 2,280 | .10 | | NA025AR0 | 2.5000 | 3.0002 | 2.686 | 2.814 | 2.869 | 459 | 1,150 | 1,100 | 960 | 2,780 | .12 | | NA030AR0 | 3.0000 | 3.5002 | 3.186 | 3.314 | 3.367 | 507 | 1,225 | 1,230 | 1,140 | 3,290 | .14 | | NA035AR0 | 3.5000 | 4.0002 | 3.686 | 3.814 | 3.867 | 552 | 1,292 | 1,350 | 1,310 | 3,790 | .17 | | NA040AR0 | 3.9998 | 4.5003 | 4.186 | 4.314 | 4.367 | 595 | 1,353 | 1,470 | 1,490 | 4,300 | .19 | | NA042AR0 | 4.2498 | 4.7503 | 4.436 | 4.564 | 4.615 | 616 | 1,382 | 1,530 | 1,580 | 4,550 | .20 | | NA045AR0 | 4.4998 | 5.0003 | 4.686 | 4.814 | 4.865 | 637 | 1,410 | 1,580 | 1,660 | 4,810 | .21 | | NA047AR0 | 4.7498 | 5.2503 | 4.936 | 5.064 | 5.115 | 657 | 1,437 | 1,640 | 1,750 | 5,060 | .22 | | NA050AR0 | 4.9998 | 5.5003 | 5.186 | 5.314 | 5.365 | 676 | 1,463 | 1,690 | 1,840 | 5,310 | .23 | | NA055AR0 | 5.4998 | 6.0003 | 5.686 | 5.814 | 5.863 | 715 | 1,513 | 1,800 | 2,020 | 5,820 | .25 | | NA060AR0 | 5.9998 | 6.5003 | 6.186 | 6.314 | 6.363 | 752 | 1,561 | 1,900 | 2,190 | 6,320 | .28 | | NA065AR0 | 6.4998 | 7.0003 | 6.686 | 6.814 | 6.861 | 788 | 1,605 | 2,000 | 2,370 | 6,830 | .30 | | NA070AR0 | 6.9998 | 7.5003 | 7.186 | 7.314 | 7.361 | 823 | 1,648 | 2,100 | 2,540 | 7,340 | .32 | | NA075AR0 | 7.4998 | 8.0003 | 7.686 | 7.814 | 7.861 | 857 | 1,689 | 2,190 | 2,720 | 7,840 | .34 | | NA080AR0 | 7.9998 | 8.5003 | 8.186 | 8.314 | 8.359 | 890 | 1,728 | 2,280 | 2,890 | 8,350 | .36 | | NA090AR0 | 8.9998 | 9.5003 | 9.186 | 9.314 | 9.357 | 954 | 1,802 | 2,470 | 3,240 | 9,360 | .41 | | NA100AR0 | 9.9998 | 10.5003 | 10.186 | 10.314 | 10.355 | 1,014 | 1,871 | 2,640 | 3,590 | 10,370 | .45 | | NA110AR0 | 10.9998 | 11.5003 | 11.186 | 11.314 | 11.353 | 1,072 | 1,936 | 2,810 | 3,940 | 11,380 | .50 | | NA120AR0 | 11.9998 | 12.5003 | 12.186 | 12.314 | 12.349 | 1,128 | 1,998 | 2,970 | 4,290 | 12,390 | .54 | ① Capacities listed are not simultaneous. For combined loading see
discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ² Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). [&]quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type A - Open Endurakote-Plated Endura-Slim Bearings, ANGULAR CONTACT | | | | | | NB Ser | ies | | | | | | | |----------|---------|-----------------|----------------|-----------|-----------------------|------------------|----------------|------------|--------|--------|---------|---| | KAYDON | | | nsions in I | | | | | ties in Po | | | Approx. | | | Bearing | Si | ze | Lar | nd Diamet | ers | | Dynamic | | Sta | tic② | Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | NB020AR0 | 2.0000 | 2.6252 | 2.231 | 2.393 | 2.464 | 601 | 1,520 | 1,380 | 1,090 | 3,150 | .15 | | | NB025AR0 | 2.5000 | 3.1252 | 2.731 | 2.893 | 2.964 | 675 | 1,650 | 1,590 | 1,340 | 3,860 | .19 | | | NB030AR0 | 3.0000 | 3.6252 | 3.231 | 3.393 | 3.462 | 734 | 1,737 | 1,750 | 1,550 | 4,470 | .22 | Circular pocket | | NB035AR0 | 3.5000 | 4.1252 | 3.731 | 3.893 | 3.962 | 801 | 1,840 | 1,930 | 1,790 | 5,180 | .27 | separator | | NB040AR0 | 3.9998 | 4.6253 | 4.231 | 4.393 | 4.460 | 865 | 1,934 | 2,100 | 2,040 | 5,890 | .30 | 5/32" balls | | NB042AR0 | 4.2498 | 4.8753 | 4.481 | 4.643 | 4.710 | 891 | 1,967 | 2,170 | 2,150 | 6,200 | .31 | .3125 | | NB045AR0 | 4.4998 | 5.1253 | 4.731 | 4.893 | 4.960 | 917 | 2,000 | 2,240 | 2,250 | 6,500 | .34 | | | NB047AR0 | 4.7498 | 5.3753 | 4.981 | 5.143 | 5.210 | 951 | 2,051 | 2,340 | 2,390 | 6,910 | .35 | F | | NB050AR0 | 4.9998 | 5.6253 | 5.231 | 5.393 | 5.460 | 976 | 2,081 | 2,410 | 2,500 | 7,210 | .37 | 3125 | | NB055AR0 | 5.4998 | 6.1253 | 5.731 | 5.893 | 5.958 | 1,033 | 2,158 | 2,560 | 2,740 | 7,920 | .40 | ↑ ↑ | | NB060AR0 | 5.9998 | 6.6253 | 6.231 | 6.393 | 6.458 | 1,088 | 2,230 | 2,710 | 2,990 | 8,630 | .44 | L ₂ | | NB065AR0 | 6.4998 | 7.1253 | 6.731 | 6.893 | 6.958 | 1,132 | 2,281 | 2,840 | 3,200 | 9,240 | .47 | L ₁ L ₃ | | NB070AR0 | 6.9998 | 7.6253 | 7.231 | 7.393 | 7.456 | 1,184 | 2,347 | 2,980 | 3,450 | 9,960 | .50 | ④ F = .040 | | NB075AR0 | 7.4998 | 8.1253 | 7.731 | 7.893 | 7.955 | 1,235 | 2,409 | 3,120 | 3,700 | 10,670 | .54 | Bearing corners are | | NB080AR0 | 7.9998 | 8.6253 | 8.231 | 8.393 | 8.453 | 1,284 | 2,469 | 3,260 | 3,940 | 11,380 | .57 | normally chamfered | | NB090AR0 | 8.9998 | 9.6253 | 9.231 | 9.393 | 9.451 | 1,370 | 2,568 | 3,510 | 4,400 | 12,700 | .64 | | | NB100AR0 | 9.9998 | 10.6253 | 10.231 | 10.393 | 10.449 | 1,461 | 2,673 | 3,760 | 4,890 | 14,120 | .71 | | | NB110AR0 | 10.9998 | 11.6253 | 11.231 | 11.393 | 11.447 | 1,540 | 2,760 | 4,000 | 5,350 | 15,440 | .78 | | | NB120AR0 | 11.9998 | 12.6253 | 12.231 | 12.393 | 12.445 | 1,623 | 2,853 | 4,240 | 5,840 | 16,860 | .85 | | | NB140AR0 | 13.9998 | 14.6253 | 14.231 | 14.393 | 14.439 | 1,767 | 3,005 | 4,670 | 6,760 | 19,500 | .98 | | | NB160AR0 | 15.9998 | 16.6253 | 16.231 | 16.393 | 16.433 | 1,907 | 3,154 | 5,100 | 7,710 | 22,250 | 1.12 | | | NB180AR0 | 17.9998 | 18.6253 | 18.231 | 18.393 | 18.425 | 2,038 | 3,292 | 5,510 | 8,660 | 24,990 | 1.26 | | | NB200AR0 | 19.9998 | 20.6253 | 20.231 | 20.393 | 20.416 | 2,162 | 3,421 | 5,900 | 9,610 | 27,730 | 1.40 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. - ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. - 3 ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). - (4) "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com #### Type A – Open Endurakote-Plated Endura-Slim Bearings, ANGULAR CONTACT | | | | | | NC Ser | ies | | | | | | |-------------------|---------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|--------|--------|----------------| | | | Dimei | nsions in l | nches | | | Capaci | ties in Po | unds① | | | | KAYDON | Si | ze | Lan | d Diame | ters | | Dynamic | | Stat | tic② | Approx | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | Wt. in
lbs. | | NC040AR0 | 3.9998 | 4.7503 | 4.277 | 4.473 | 4.554 | 1,153 | 2,520 | 2,770 | 2,550 | 7,360 | .44 | | NC042AR0 | 4.2498 | 5.0003 | 4.527 | 4.723 | 4.804 | 1,194 | 2,580 | 2,880 | 2,710 | 7,820 | .46 | | NC045AR0 | 4.4998 | 5.2503 | 4.777 | 4.973 | 5.052 | 1,234 | 2,637 | 2,990 | 2,860 | 8,270 | .49 | | NC047AR0 | 4.7498 | 5.5003 | 5.027 | 5.223 | 5.302 | 1,274 | 2,693 | 3,100 | 3,020 | 8,720 | .51 | | NC050AR0 | 4.9998 | 5.7503 | 5.277 | 5.473 | 5.552 | 1,313 | 2,746 | 3,200 | 3,180 | 9,170 | .54 | | NC055AR0 | 5.4998 | 6.2503 | 5.777 | 5.973 | 6.052 | 1,374 | 2,820 | 3,370 | 3,440 | 9,920 | .58 | | NC060AR0 | 5.9998 | 6.7503 | 6.277 | 6.473 | 6.550 | 1,448 | 2,917 | 3,580 | 3,750 | 10,820 | .64 | | NC065AR0 | 6.4998 | 7.2503 | 6.777 | 6.973 | 7.050 | 1,519 | 3,009 | 3,770 | 4,060 | 11,720 | .68 | | NC070AR0 | 6.9998 | 7.7503 | 7.277 | 7.473 | 7.550 | 1,575 | 3,071 | 3,930 | 4,320 | 12,470 | .74 | | NC075AR0 | 7.4998 | 8.2503 | 7.777 | 7.973 | 8.048 | 1,642 | 3,156 | 4,120 | 4,630 | 13,380 | .78 | | NC080AR0 | 7.9998 | 8.7503 | 8.277 | 8.473 | 8.548 | 1,708 | 3,236 | 4,300 | 4,950 | 14,280 | .84 | | NC090AR0 | 8.9998 | 9.7503 | 9.277 | 9.473 | 9.546 | 1,822 | 3,366 | 4,630 | 5,520 | 15,930 | .98 | | NC100AR0 | 9.9998 | 10.7503 | 10.277 | 10.473 | 10.544 | 1,942 | 3,508 | 4,970 | 6,140 | 17,730 | 1.04 | | NC110AR0 | 10.9998 | 11.7503 | 11.277 | 11.473 | 11.542 | 2,047 | 3,621 | 5,280 | 6,720 | 19,390 | 1.14 | | NC120AR0 | 11.9998 | 12.7503 | 12.277 | 12.473 | 12.540 | 2,147 | 3,729 | 5,570 | 7,290 | 21,040 | 1.23 | | NC140AR0 | 13.9998 | 14.7503 | 14.277 | 14.473 | 14.535 | 2,347 | 3,946 | 6,170 | 8,490 | 24,500 | 1.43 | | NC160AR0 | 15.9998 | 16.7503 | 16.277 | 16.473 | 16.529 | 2,533 | 4,144 | 6,730 | 9,680 | 27,950 | 1.63 | | NC180AR0 | 17.9998 | 18.7503 | 18.277 | 18.473 | 18.523 | 2,707 | 4,326 | 7,280 | 10,880 | 31,410 | 1.83 | | NC200AR0 | 19.9998 | 20.7503 | 20.277 | 20.473 | 20.517 | 2,863 | 4,484 | 7,780 | 12,030 | 34,720 | 2.03 | | NC250AR0 | 24.9998 | 25.7503 | 25.277 | 25.473 | 25.500 | 3,233 | 4,863 | 9,010 | 14,900 | 43,280 | 2.52 | | NC300AR0 | 29.9998 | 30.7503 | 30.277 | 30.473 | 30.484 | 3,561 | 5,196 | 10,160 | 17,960 | 51,850 | 3.02 | | | ar po
arato
6" ba | or | |--------|-------------------------|------------------------| | .375 — | | | | | | .375
L ₃ | $\P = .040$ Bearing corners are normally chamfered | | | | | | ND Ser | ies | | | | | | |-------------------|---------|-----------------|----------------|----------------|-----------|------------------|----------------|------------|--------|--------|-------------------| | 1/ 1// D A 1/ | | Dime | nsions in I | nches | | | Capaci | ties in Po | unds① | | | | KAYDON
Bearing | Si | ize | Laı | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L₃ | KAYDON
Radial | ISO
Radial3 | Thrust | Radial | Thrust | lbs. | | ND040AR0 | 3.9998 | 5.0003 | 4.370 | 4.630 | 4.741 | 1,819 | 3,708 | 4,260 | 3,550 | 10,260 | .80 | | ND042AR0 | 4.2498 | 5.2503 | 4.620 | 4.880 | 4.991 | 1,876 | 3,786 | 4,420 | 3,750 | 10,830 | .84 | | ND045AR0 | 4.4998 | 5.5003 | 4.870 | 5.130 | 5.241 | 1,931 | 3,861 | 4,570 | 3,950 | 11,400 | .88 | | ND047AR0 | 4.7498 | 5.7503 | 5.120 | 5.380 | 5.490 | 1,986 | 3,934 | 4,720 | 4,150 | 11,970 | .93 | | ND050AR0 | 4.9998 | 6.0003 | 5.370 | 5.630 | 5.740 | 2,040 | 4,004 | 4,870 | 4,340 | 12,540 | .98 | | ND055AR0 | 5.4998 | 6.5003 | 5.870 | 6.130 | 6.238 | 2,145 | 4,138 | 5,160 | 4,740 | 13,680 | 1.06 | | ND060AR0 | 5.9998 | 7.0003 | 6.370 | 6.630 | 6.738 | 2,247 | 4,264 | 5,440 | 5,130 | 14,820 | 1.15 | | ND065AR0 | 6.4998 | 7.5003 | 6.870 | 7.130 | 7.236 | 2,346 | 4,384 | 5,720 | 5,530 | 15,960 | 1.24 | | ND070AR0 | 6.9998 | 8.0003 | 7.370 | 7.630 | 7.736 | 2,442 | 4,499 | 5,990 | 5,920 | 17,100 | 1.33 | | ND075AR0 | 7.4998 | 8.5003 | 7.870 | 8.130 | 8.236 | 2,536 | 4,608 | 6,250 | 6,320 | 18,240 | 1.42 | | ND080AR0 | 7.9998 | 9.0003 | 8.370 | 8.630 | 8.734 | 2,627 | 4,713 | 6,510 | 6,710 | 19,380 | 1.52 | | ND090AR0 | 8.9998 | 10.0003 | 9.370 | 9.630 | 9.732 | 2,803 | 4,911 | 7,010 | 7,500 | 21,660 | 1.69 | | ND100AR0 | 9.9998 | 11.0003 | 10.370 | 10.630 | 10.732 | 2,972 | 5,096 | 7,500 | 8,290 | 23,940 | 1.87 | | ND110AR0 | 10.9998 | 12.0003 | 11.370 | 11.630 | 11.730 | 3,133 | 5,270 | 7,960 | 9,080 | 26,220 | 2.05 | | ND120AR0 | 11.9998 | 13.0003 | 12.370 | 12.630 | 12.728 | 3,288 | 5,434 | 8,420 | 9,870 | 28,500 | 2.23 | | ND140AR0 | 13.9998 | 15.0003 | 14.370 | 14.630 | 14.724 | 3,582 | 5,739 | 9,290 | 11,450 | 33,060 | 2.57 | | ND160AR0 | 15.9998 | 17.0003 | 16.370 | 16.630 | 16.718 | 3,856 | 6,018 | 10,130 | 13,030 | 37,620 | 2.93 | | ND180AR0 | 17.9998 | 19.0003 | 18.370 | 18.630 | 18.712 | 4,113 | 6,276 | 10,930 | 14,610 | 42,180 | 3.29 | | ND200AR0 | 19.9998 | 21.0003 | 20.370 | 20.630 | 20.705 | 4,356 | 6,517 | 11,710 | 16,190 | 46,740 | 3.65 | | ND210AR0 |
20.9998 | 22.0003 | 21.370 | 21.630 | 21.700 | 4,472 | 6,632 | 12,086 | 16,981 | 49,020 | 3.83 | | ND250AR0 | 24.9998 | 26.0003 | 25.370 | 25.630 | 25.688 | 4,908 | 7,060 | 13,540 | 20,140 | 58,140 | 4.54 | | ND300AR0 | 29.9998 | 31.0003 | 30.370 | 30.630 | 30.672 | 5,397 | 7,538 | 15,260 | 24,090 | 69,540 | 5.44 | Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ⁽refer to Page 95). They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type A - Open Endurakote-Plated Endura-Slim Bearings, ANGULAR CONTACT | | | | | | NF Ser | ies | | | | | | |-------------------|---------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|---------|----------------| | | | Dimer | nsions in I | nches | | | Capaci | ties in Po | unds① | | | | KAYDON
Bearing | Si | ze | Lar | nd Diame | ters | | Dynamic | | | tic② | Approx. Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial3 | Thrust | Radial | Thrust | lbs. | | NF040AR0 | 3.9998 | 5.5003 | 4.555 | 4.945 | 5.115 | 3,736 | 6,809 | 8,420 | 6,350 | 18,340 | 1.92 | | NF042AR0 | 4.2498 | 5.7503 | 4.805 | 5.195 | 5.365 | 3,805 | 6,891 | 8,630 | 6,600 | 19,050 | 2.04 | | NF045AR0 | 4.4998 | 6.0003 | 5.060 | 5.445 | 5.615 | 3,966 | 7,134 | 9,050 | 7,090 | 20,460 | 2.14 | | NF047AR0 | 4.7498 | 6.2503 | 5.305 | 5.695 | 5.865 | 4,034 | 7,207 | 9,260 | 7,330 | 21,160 | 2.26 | | NF050AR0 | 4.9998 | 6.5003 | 5.555 | 5.945 | 6.115 | 4,101 | 7,279 | 9,460 | 7,570 | 21,870 | 2.37 | | NF055AR0 | 5.4998 | 7.0003 | 6.055 | 6.445 | 6.613 | 4,319 | 7,566 | 10,060 | 8,310 | 23,980 | 2.59 | | NF060AR0 | 5.9998 | 7.5003 | 6.555 | 6.945 | 7.113 | 4,530 | 7,835 | 10,650 | 9,040 | 26,100 | 2.72 | | NF065AR0 | 6.4998 | 8.0003 | 7.055 | 7.445 | 7.613 | 4,734 | 8,088 | 11,220 | 9,770 | 28,220 | 2.94 | | NF070AR0 | 6.9998 | 8.5003 | 7.555 | 7.945 | 8.113 | 4,932 | 8,329 | 11,770 | 10,510 | 30,330 | 3.16 | | NF075AR0 | 7.4998 | 9.0003 | 8.055 | 8.445 | 8.610 | 5,052 | 8,432 | 12,130 | 11,000 | 31,740 | 3.39 | | NF080AR0 | 7.9998 | 9.5003 | 8.555 | 8.945 | 9.110 | 5,242 | 8,655 | 12,670 | 11,730 | 33,860 | 3.61 | | NF090AR0 | 8.9998 | 10.5003 | 9.555 | 9.945 | 10.108 | 5,608 | 9,073 | 13,700 | 13,190 | 38,090 | 3.95 | | NF100AR0 | 9.9998 | 11.5003 | 10.555 | 10.945 | 11.106 | 5,890 | 9,353 | 14,530 | 14,420 | 41,620 | 4.40 | | NF110AR0 | 10.9998 | 12.5003 | 11.555 | 11.945 | 12.106 | 6,227 | 9,720 | 15,500 | 15,880 | 45,850 | 4.75 | | NF120AR0 | 11.9998 | 13.5003 | 12.555 | 12.945 | 13.104 | 6,487 | 9,969 | 16,290 | 17,100 | 49,380 | 5.20 | | NF140AR0 | 13.9998 | 15.5003 | 14.555 | 14.945 | 15.102 | 7,043 | 10,523 | 17,950 | 19,790 | 57,140 | 5.76 | | NF160AR0 | 15.9998 | 17.5003 | 16.555 | 16.945 | 17.098 | 7,563 | 11,030 | 19,540 | 22,480 | 64,890 | 6.78 | | NF180AR0 | 17.9998 | 19.5003 | 18.555 | 18.945 | 19.096 | 8,103 | 11,573 | 21,210 | 25,410 | 73,360 | 7.67 | | NF200AR0 | 19.9998 | 21.5003 | 20.555 | 20.945 | 21.092 | 8,562 | 12,006 | 22,680 | 28,100 | 81,120 | 8.47 | | NF250AR0 | 24.9998 | 26.5003 | 25.555 | 25.945 | 26.085 | 9,585 | 12,954 | 26,100 | 34,700 | 100,200 | 10.50 | | NF300AR0 | 29.9998 | 31.5003 | 30.555 | 30.945 | 31.075 | 10,533 | 13,848 | 29,430 | 41,540 | 119,900 | 12.50 | | NF350AR0 | 34.9998 | 36.5003 | 35.555 | 35.945 | 36.064 | 11,382 | 14,653 | 32,580 | 48,380 | 139,700 | 14.60 | | NF400AR0 | 39.9998 | 41.5003 | 40.555 | 40.945 | 41.054 | 12,147 | 15,387 | 35,580 | 55,220 | 159,400 | 16.60 | Bearing corners are normally chamfered | | | | | | NG Ser | ies | | | | | | |-------------------|---------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|--------|---------|------------------| | IV AVE ON | | Dime | nsions in l | Inches | | | Capaci | ties in Po | unds① | | | | KAYDON
Bearing | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt.in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | NG040AR0 | 3.9998 | 6.0003 | 4.742 | 5.258 | 5.491 | 6,281 | 10,167 | 13,630 | 9,480 | 27,360 | 3.61 | | NG042AR0 | 4.2498 | 6.2503 | 4.992 | 5.508 | 5.741 | 6,438 | 10,384 | 14,090 | 9,950 | 28,730 | 3.83 | | NG045AR0 | 4.4998 | 6.5003 | 5.242 | 5.758 | 5.989 | 6,562 | 10,592 | 14,530 | 10,430 | 30,100 | 3.95 | | NG047AR0 | 4.7498 | 6.7503 | 5.492 | 6.008 | 6.239 | 6,745 | 10,792 | 14,970 | 10,900 | 31,460 | 4.17 | | NG050AR0 | 4.9998 | 7.0003 | 5.742 | 6.258 | 6.489 | 6,897 | 10,985 | 15,400 | 11,370 | 32,830 | 4.42 | | NG055AR0 | 5.4998 | 7.5003 | 6.242 | 6.758 | 6.989 | 7,192 | 11,352 | 16,240 | 12,320 | 35,570 | 4.73 | | NG060AR0 | 5.9998 | 8.0003 | 6.742 | 7.258 | 7.489 | 7,480 | 11,697 | 17,060 | 13,270 | 38,300 | 5.07 | | NG065AR0 | 6.4998 | 8.5003 | 7.242 | 7.758 | 7.987 | 7,761 | 12,023 | 17,870 | 14,220 | 41,040 | 5.41 | | NG070AR0 | 6.9998 | 9.0003 | 7.742 | 8.258 | 8.487 | 8,035 | 12,333 | 18,650 | 15,160 | 43,780 | 5.87 | | NG075AR0 | 7.4998 | 9.5003 | 8.242 | 8.758 | 8.987 | 8,303 | 12,629 | 19,420 | 16,110 | 46,510 | 6.20 | | NG080AR0 | 7.9998 | 10.0003 | 8.742 | 9.258 | 9.485 | 8,566 | 12,912 | 20,180 | 17,060 | 49,250 | 6.54 | | NG090AR0 | 8.9998 | 11.0003 | 9.742 | 10.258 | 10.485 | 9,073 | 13,446 | 21,640 | 18,960 | 54,720 | 7.22 | | NG100AR0 | 9.9998 | 12.0003 | 10.742 | 11.258 | 11.483 | 9,561 | 13,942 | 23,060 | 20,850 | 60,190 | 8.00 | | NG110AR0 | 10.9998 | 13.0003 | 11.742 | 12.258 | 12.481 | 10,027 | 14,409 | 24,440 | 22,750 | 65,660 | 8.68 | | NG120AR0 | 11.9998 | 14.0003 | 12.742 | 13.258 | 13.481 | 10,481 | 14,849 | 25,780 | 24,640 | 71,140 | 9.47 | | NG140AR0 | 13.9998 | 16.0003 | 14.742 | 15.258 | 15.478 | 11,338 | 15,665 | 28,360 | 28,430 | 82,080 | 10.90 | | NG160AR0 | 15.9998 | 18.0003 | 16.742 | 17.258 | 17.474 | 12,142 | 16,411 | 30,830 | 32,220 | 93,020 | 12.40 | | NG180AR0 | 17.9998 | 20.0003 | 18.742 | 19.258 | 19.472 | 12,898 | 17,101 | 33,200 | 36,020 | 104,000 | 13.80 | | NG200AR0 | 19.9998 | 22.0003 | 20.742 | 21.258 | 21.468 | 13,612 | 17,745 | 35,490 | 39,810 | 114,900 | 15.20 | | NG220AR0 | 21.9998 | 24.0003 | 22.742 | 23.258 | 23.468 | 14,290 | 18,351 | 37,712 | 43,598 | 125,856 | 16.63 | | NG250AR0 | 24.9998 | 27.0003 | 25.742 | 26.258 | 26.461 | 15,239 | 19,198 | 40,920 | 49,280 | 142,300 | 18.80 | | NG300AR0 | 29.9998 | 32.0003 | 30.742 | 31.258 | 31.451 | 16,687 | 20,480 | 46,020 | 58,760 | 169,600 | 22.50 | | NG350AR0 | 34.9998 | 37.0003 | 35.742 | 36.258 | 36.440 | 17,982 | 21,636 | 50,840 | 68,240 | 197,000 | 26.20 | | NG400AR0 | 39.9998 | 42.0003 | 40.472 | 41.258 | 41.430 | 19,153 | 22,693 | 55,440 | 77,720 | 224,400 | 29.80 | $\P = .080$ Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Open Endurakote-Plated **Endura-Slim Bearing Selections** Type C – RADIAL CONTACT A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction - often used in conjunction with another bearing. | NAA Series | | | | | | | | | | | | | | |------------|-------------------|--------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--| | I | | | Dimension | s in Inches | | Сара | cities in Pour | nds① | i. | | | | | | ı | KAYDON
Bearing | S | ize | Land Di | ameters | Dyna | amic | Static2 | Approx.
Wt. in | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | | NAA10CL0 | 1.0000 | 1.3752 | 1.140 | 1.235 | 188 | 558 | 290 | .026 | | | | | | | NAA15CL0 | 1.5000 | 1.8752 | 1.640 | 1.735 | 225 | 632 | 400 | .039 | | | | | | | NAA17CL0 | 1.7500 | 2.1252 | 1.890 | 1.985 | 242 | 663 | 460 | .045 | | | | | | Snap-over separator 3/32" balls | |---------------------------------------| | .1875 — F | | 1875
L ₂ L ₁ | | \[| | NA Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|----------------|------------------|----------------|---------|----------------|--|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | | KAYDON | S | ize | Land Di | ameters | Dyn | amic | Static@ | Approx. | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
lbs. | | | | | | | NA020CP0 | 2.0000 | 2.5002 | 2.186 | 2.314 | 393 | 1,012 | 680 | .10 | | | | | | | NA025CP0 | 2.5000 | 3.0002 | 2.686 | 2.814 | 442 | 1,094 | 830 | .13 | | | | | | | NA030CP0 | 3.0000 | 3.5002 | 3.186 | 3.314 | 487 | 1,166 | 990 | .15 | | | | | | | NA035CP0 | 3.5000 | 4.0002 | 3.686 | 3.814 | 530 | 1,230 | 1,140 | .18 | | | | | | | NA040CP0 | 3.9998 | 4.5003 | 4.186 | 4.314 | 571 | 1,289 | 1,290 | .19 | | | | | | | NA042CP0 | 4.2498 | 4.7503 |
4.436 | 4.564 | 591 | 1,317 | 1,370 | .20 | | | | | | | NA045CP0 | 4.4998 | 5.0003 | 4.686 | 4.814 | 610 | 1,344 | 1,440 | .22 | | | | | | | NA047CP0 | 4.7498 | 5.2503 | 4.936 | 5.064 | 629 | 1,369 | 1,520 | .23 | | | | | | | NA050CP0 | 4.9998 | 5.5003 | 5.186 | 5.314 | 648 | 1,394 | 1,590 | .24 | | | | | | | NA055CP0 | 5.4998 | 6.0003 | 5.686 | 5.814 | 685 | 1,442 | 1,750 | .25 | | | | | | | NA060CP0 | 5.9998 | 6.5003 | 6.186 | 6.314 | 720 | 1,487 | 1,900 | .28 | | | | | | | NA065CP0 | 6.4998 | 7.0003 | 6.686 | 6.814 | 754 | 1,530 | 2,050 | .30 | | | | | | | NA070CP0 | 6.9998 | 7.5003 | 7.186 | 7.314 | 787 | 1,571 | 2,200 | .31 | | | | | | | NA075CP0 | 7.4998 | 8.0003 | 7.686 | 7.814 | 820 | 1,610 | 2,350 | .34 | | | | | | | NA080CP0 | 7.9998 | 8.5003 | 8.186 | 8.314 | 851 | 1,647 | 2,500 | .38 | | | | | | | NA090CP0 | 8.9998 | 9.5003 | 9.186 | 9.314 | 912 | 1,718 | 2,810 | .44 | | | | | | | NA100CP0 | 9.9998 | 10.5003 | 10.186 | 10.314 | 969 | 1,784 | 3,110 | .50 | | | | | | | NA110CP0 | 10.9998 | 11.5003 | 11.186 | 11.314 | 1,025 | 1,846 | 3,410 | .52 | | | | | | | NA120CP0 | 11.9998 | 12.5003 | 12.186 | 12.314 | 1,078 | 1,904 | 3,720 | .56 | | | | | | Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). $[\]textcircled{4}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. #### Type C - Open Endurakote-Plated Endura-Slim Bearings, RADIAL CONTACT | NB Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|---------|------------------|----------------|---------|----------------|--|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | | KAYDON | S | iize | Land Di | ameters | Dyn | amic | Static2 | Approx. | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
lbs. | | | | | | | NB020CP0 | 2.0000 | 2.6252 | 2.231 | 2.393 | 577 | 1,431 | 930 | .16 | | | | | | | NB025CP0 | 2.5000 | 3.1252 | 2.731 | 2.893 | 644 | 1,549 | 1,140 | .20 | | | | | | | NB030CP0 | 3.0000 | 3.6252 | 3.231 | 3.393 | 707 | 1,651 | 1,340 | .24 | | | | | | | NB035CP0 | 3.5000 | 4.1252 | 3.731 | 3.893 | 767 | 1,743 | 1,540 | .27 | | | | | | | NB040CP0 | 3.9998 | 4.6253 | 4.231 | 4.393 | 825 | 1,827 | 1,750 | .30 | | | | | | | NB042CP0 | 4.2498 | 4.8753 | 4.481 | 4.643 | 846 | 1,853 | 1,830 | .31 | | | | | | | NB045CP0 | 4.4998 | 5.1253 | 4.731 | 4.893 | 880 | 1,904 | 1,950 | .33 | | | | | | | NB047CP0 | 4.7498 | 5.3753 | 4.981 | 5.143 | 901 | 1,928 | 2,030 | .34 | | | | | | | NB050CP0 | 4.9998 | 5.6253 | 5.231 | 5.393 | 933 | 1,976 | 2,150 | .38 | | | | | | | NB055CP0 | 5.4998 | 6.1253 | 5.731 | 5.893 | 984 | 2,044 | 2,360 | .41 | | | | | | | NB060CP0 | 5.9998 | 6.6253 | 6.231 | 6.393 | 1,034 | 2,108 | 2,560 | .44 | | | | | | | NB065CP0 | 6.4998 | 7.1253 | 6.731 | 6.893 | 1,082 | 2,168 | 2,760 | .47 | | | | | | | NB070CP0 | 6.9998 | 7.6253 | 7.231 | 7.393 | 1,129 | 2,226 | 2,970 | .50 | | | | | | | NB075CP0 | 7.4998 | 8.1253 | 7.731 | 7.893 | 1,175 | 2,281 | 3,170 | .53 | | | | | | | NB080CP0 | 7.9998 | 8.6253 | 8.231 | 8.393 | 1,219 | 2,334 | 3,370 | .57 | | | | | | | NB090CP0 | 8.9998 | 9.6253 | 9.231 | 9.393 | 1,304 | 2,434 | 3,780 | .66 | | | | | | | NB100CP0 | 9.9998 | 10.6253 | 10.231 | 10.393 | 1,386 | 2,527 | 4,190 | .73 | | | | | | | NB110CP0 | 10.9998 | 11.6253 | 11.231 | 11.393 | 1,464 | 2,615 | 4,590 | .75 | | | | | | | NB120CP0 | 11.9998 | 12.6253 | 12.231 | 12.393 | 1,539 | 2,698 | 5,000 | .83 | | | | | | | NB140CP0 | 13.9998 | 14.6253 | 14.231 | 14.393 | 1,680 | 2,851 | 5,810 | 1.05 | | | | | | | NB160CP0 | 15.9998 | 16.6253 | 16.231 | 16.393 | 1,812 | 2,991 | 6,620 | 1.20 | | | | | | | NB180CP0 | 17.9998 | 18.6253 | 18.231 | 18.393 | 1,936 | 3,121 | 7,440 | 1.35 | | | | | | | NB200CP0 | 19.9998 | 20.6253 | 20.231 | 20.393 | 2,053 | 3,242 | 8,250 | 1.50 | | | | | | # Snap-over separator 5/32" balls \P F = .040 Bearing corners are normally chamfered - ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y contact Kaydon product engineering for values. - $\ensuremath{\mathfrak{D}} \ensuremath{\mathfrak{S}} \ensuremath{\mathsf{Static}} \ensuremath{\mathsf{capacities}} \ensuremath{\mathsf{are}} \ensuremath{\mathsf{non-brinell}} \ensuremath{\mathsf{limits}} \ensuremath{\mathsf{based}} \ensuremath{\mathsf{on}} \ensuremath{\mathsf{rigid}} \ensuremath{\mathsf{support}} \ensuremath{\mathsf{from}} \ensuremath{\mathsf{the}} \ensuremath{\mathsf{shaft}} \ensuremath{\mathsf{and}} \ensuremath{\mathsf{housing}}.$ - (9) ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). - $\ensuremath{\mathfrak{A}}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com #### Type C – Open Endurakote-Plated Endura-Slim Bearings, RADIAL CONTACT | NC Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | | KAYDON
Bearing | Si | ze | Land D | iameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | | NC040CP0 | 3.9998 | 4.7503 | 4.277 | 4.473 | 1,073 | 2,321 | 2,100 | .45 | | | | | | | NC042CP0 | 4.2498 | 5.0003 | 4.527 | 4.723 | 1,108 | 2,370 | 2,220 | .47 | | | | | | | NC045CP0 | 4.4998 | 5.2503 | 4.777 | 4.973 | 1,143 | 2,418 | 2,340 | .48 | | | | | | | NC047CP0 | 4.7498 | 5.5003 | 5.027 | 5.223 | 1,176 | 2,464 | 2,460 | .50 | | | | | | | NC050CP0 | 4.9998 | 5.7503 | 5.277 | 5.473 | 1,209 | 2,509 | 2,590 | .58 | | | | | | | NC055CP0 | 5.4998 | 6.2503 | 5.777 | 5.973 | 1,274 | 2,594 | 2,830 | .59 | | | | | | | NC060CP0 | 5.9998 | 6.7503 | 6.277 | 6.473 | 1,337 | 2,674 | 3,070 | .63 | | | | | | | NC065CP0 | 6.4998 | 7.2503 | 6.777 | 6.973 | 1,397 | 2,751 | 3,310 | .68 | | | | | | | NC070CP0 | 6.9998 | 7.7503 | 7.277 | 7.473 | 1,457 | 2,823 | 3,550 | .73 | | | | | | | NC075CP0 | 7.4998 | 8.2503 | 7.777 | 7.973 | 1,514 | 2,893 | 3,790 | .78 | | | | | | | NC080CP0 | 7.9998 | 8.7503 | 8.277 | 8.473 | 1,570 | 2,960 | 4,030 | .84 | | | | | | | NC090CP0 | 8.9998 | 9.7503 | 9.277 | 9.473 | 1,678 | 3,085 | 4,510 | .94 | | | | | | | NC100CP0 | 9.9998 | 10.7503 | 10.277 | 10.473 | 1,781 | 3,203 | 4,990 | 1.06 | | | | | | | NC110CP0 | 10.9998 | 11.7503 | 11.277 | 11.473 | 1,879 | 3,313 | 5,470 | 1.16 | | | | | | | NC120CP0 | 11.9998 | 12.7503 | 12.277 | 12.473 | 1,974 | 3,417 | 5,950 | 1.25 | | | | | | | NC140CP0 | 13.9998 | 14.7503 | 14.277 | 14.473 | 2,154 | 3,611 | 6,910 | 1.52 | | | | | | | NC160CP0 | 15.9998 | 16.7503 | 16.277 | 16.473 | 2,321 | 3,787 | 7,880 | 1.73 | | | | | | | NC180CP0 | 17.9998 | 18.7503 | 18.277 | 18.473 | 2,478 | 3,951 | 8,840 | 1.94 | | | | | | | NC200CP0 | 19.9998 | 20.7503 | 20.277 | 20.473 | 2,626 | 4,104 | 9,800 | 2.16 | | | | | | | NC250CP0 | 24.9998 | 25.7503 | 25.277 | 25.473 | 2,962 | 4,447 | 12,200 | 2.69 | | | | | | | NC300CP0 | 29.9998 | 30.7503 | 30.277 | 30.473 | 3,260 | 4,750 | 14,610 | 3.21 | | | | | | normally chamfered | | | | | | | | | _ | | | | | | |-------------------|--------|-----------------|----------------|----------------|------------------|-----------------------|---------|-------------------|--|--|--|--|--| | ND Series | | | | | | | | | | | | | | | | | Dimensions | in Inches | | Сара | Capacities in Pounds① | | | | | | | | | KAYDON | Si | ze | Land Dia | meters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | | ND040CP0 | 3.9998 | 5.0003 | 4.370 | 4.630 | 1,755 | 3,523 | 3,080 | .78 | | | | | | | ND042CP0 | 4.2498 | 5.2503 | 4.620 | 4.880 | 1,787 | 3,556 | 3,190 | .83 | | | | | | | ND045CP0 | 4.4998 | 5.5003 | 4.870 | 5.130 | 1,861 | 3,671 | 3,420 | .88 | | | | | | | ND047CP0 | 4.7498 | 5.7503 | 5.120 | 5.380 | 1,892 | 3,701 | 3,530 | .94 | | | | | | | ND050CP0 | 4.9998 | 6.0003 | 5.370 | 5.630 | 1,964 | 3,808 | 3,760 | 1.00 | | | | | | | ND055CP0 | 5.4998 | 6.5003 | 5.870 | 6.130 | 2,063 | 3,937 | 4,100 | 1.06 | | | | | | | ND060CP0 | 5.9998 | 7.0003 | 6.370 | 6.630 | 2,160 | 4,059 | 4,450 | 1.16 | | | | | | | ND065CP0 | 6.4998 | 7.5003 | 6.870 | 7.130 | 2,254 | 4,174 | 4,790 | 1.22 | | | | | | | ND070CP0 | 6.9998 | 8.0003 | 7.370 | 7.630 | 2,345 | 4,284 | 5,130 | 1.31 | | | | | | | ND075CP0 | 7.4998 | 8.5003 | 7.870 | 8.130 | 2,434 | 4,388 | 5,470 | 1.41 | | | | | | | ND080CP0 | 7.9998 | 9.0003 | 8.370 | 8.630 | 2,520 | 4,489 | 5,810 | 1.53 | | | | | | | ND090CP0 | 8.9998 | 10.0003 | 9.370 | 9.630 | 2,688 | 4,678 | 6,500 | 1.72 | | | | | | 10.630 11.630 12.630 14.630 16.630 18.630 20.630 21.630 25.630 30.360 5,153 ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. 2,847 3,000 3,148 3,427 3,688
3,933 4,164 4,274 4,689 4,855 5,021 5,178 5,469 5,736 5,982 6,212 6,321 6,729 7,186 7,180 7,870 8,550 9,920 11,290 12,650 14,020 14,706 17,440 20,860 1.88 2.06 2.25 2.73 3.10 3.48 3.85 4.04 4.79 5.73 11.0003 12.0003 13.0003 15.0003 17.0003 19.0003 21.0003 22.0003 26.0003 31.0003 10.370 11.370 12.370 14.370 16.370 18.370 20.370 21.370 25.370 30.370 9.9998 10.9998 11.9998 13.9998 15.9998 17.9998 19.9998 20.9998 24.9998 29.9998 ND100CP0 ND110CP0 ND120CP0 ND140CP0 ND160CP0 ND180CP0 ND200CP0 ND210CP0 ND250CP0 ND300CP0 ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. #### Type C – Open Endurakote-Plated Endura-Slim Bearings, RADIAL CONTACT | NF Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|----------|------------------|----------------|---------|-------------------|--|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | | KAYDON
Bearing | S | ize | Land Di | iameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | | NF040CP0 | 3.9998 | 5.5003 | 4.555 | 4.945 | 3,559 | 6,334 | 5,360 | 1.9 | | | | | | | NF042CP0 | 4.2498 | 5.7503 | 4.805 | 5.195 | 3,655 | 6,472 | 5,640 | 2.0 | | | | | | | NF045CP0 | 4.4998 | 6.0003 | 5.055 | 5.445 | 3,750 | 6,605 | 5,930 | 2.1 | | | | | | | NF047CP0 | 4.7498 | 6.2503 | 5.305 | 5.695 | 3,843 | 6,732 | 6,210 | 2.2 | | | | | | | NF050CP0 | 4.9998 | 6.5003 | 5.555 | 5.945 | 3,936 | 6,855 | 6,490 | 2.3 | | | | | | | NF055CP0 | 5.4998 | 7.0003 | 6.055 | 6.445 | 4,116 | 7,089 | 7,050 | 2.5 | | | | | | | NF060CP0 | 5.9998 | 7.5003 | 6.555 | 6.945 | 4,291 | 7,308 | 7,620 | 2.7 | | | | | | | NF065CP0 | 6.4998 | 8.0003 | 7.055 | 7.445 | 4,461 | 7,516 | 8,180 | 2.9 | | | | | | | NF070CP0 | 6.9998 | 8.5003 | 7.555 | 7.945 | 4,628 | 7,713 | 8,750 | 3.2 | | | | | | | NF075CP0 | 7.4998 | 9.0003 | 8.055 | 8.445 | 4,791 | 7,901 | 9,310 | 3.4 | | | | | | | NF080CP0 | 7.9998 | 9.5003 | 8.555 | 8.945 | 4,949 | 8,081 | 9,880 | 3.5 | | | | | | | NF090CP0 | 8.9998 | 10.5003 | 9.555 | 9.945 | 5,256 | 8,421 | 11,000 | 3.9 | | | | | | | NF100CP0 | 9.9998 | 11.5003 | 10.555 | 10.945 | 5,550 | 8,737 | 12,130 | 4.3 | | | | | | | NF110CP0 | 10.9998 | 12.5003 | 11.555 | 11.945 | 5,833 | 9,033 | 13,260 | 4.8 | | | | | | | NF120CP0 | 11.9998 | 13.5003 | 12.555 | 12.945 | 6,105 | 9,313 | 14,390 | 5.2 | | | | | | | NF140CP0 | 13.9998 | 15.5003 | 14.555 | 14.945 | 6,620 | 9,832 | 16,650 | 6.0 | | | | | | | NF160CP0 | 15.9998 | 17.5003 | 16.555 | 16.945 | 7,104 | 10,306 | 18,900 | 7.1 | | | | | | | NF180CP0 | 17.9998 | 19.5003 | 18.555 | 18.945 | 7,557 | 10,744 | 21,160 | 7.9 | | | | | | | NF200CP0 | 19.9998 | 21.5003 | 20.555 | 20.945 | 7,986 | 11,153 | 23,420 | 8.9 | | | | | | | NF250CP0 | 24.9998 | 26.5003 | 25.555 | 25.945 | 8,963 | 12,074 | 29,060 | 10.9 | | | | | | | NF300CP0 | 29.9998 | 31.5003 | 30.555 | 30.945 | 9,828 | 12,887 | 34,700 | 13.0 | | | | | | | NF350CP0 | 34.9998 | 36.5003 | 35.555 | 35.945 | 10,603 | 13,620 | 40,350 | 15.1 | | | | | | | NF400CP0 | 39.9998 | 41.5003 | 40.555 | 40.945 | 11.302 | 14.289 | 45,990 | 17.2 | | | | | | Bearing corners are normally chamfered | | | Dimen | sions in Inche | es . | Ca | pacities in Po | unds① | | | |-----------------|------------------|-------------------|----------------|----------------|------------------|------------------|---------|------------------|-------------------------------| | KAYDO
Bearir | | Size | Land | l Diameters | D | ynamic | Static@ | Approx.
Wt.in | | | Numb | - | re Outsio
Dia. | | L ₂ | KAYDON
Radial | l ISO
Radial③ | Radial | lbs. | Snap-over separator | | NG0400 | CPO 3.99 | 98 6.0003 | 3 4.742 | 5.258 | 6,115 | 9,579 | 8,210 | 3.6 | 1/2" balls | | NG0420 | CPO 4.24 | 98 6.2503 | 3 4.992 | 5.508 | 6,061 | 9,481 | 8,210 | 3.8 | ─ 1.000 ─ ► | | NG0450 | CPO 4.49 | 98 6.5003 | 5.242 | 5.758 | 6,277 | 9,797 | 8,760 | 4.0 | F - | | NG0470 | CPO 4.74 | 98 6.7503 | 5.492 | 6.008 | 6,487 | 10,009 | 9,300 | 4.1 | | | NG0500 | CPO 4.99 | 98 7.0003 | 5.742 | 6.258 | 6,691 | 10,388 | 9,850 | 4.3 | | | NG0550 | CPO 5.49 | 98 7.5003 | 6.242 | 6.758 | 6,850 | 10,563 | 10,400 | 4.7 | | | NG0600 | | | | 7.258 | 7,241 | 11,085 | 11,490 | 5.1 | | | NG0650 | | | | 7.758 | 7,393 | 11,234 | 12,040 | 5.4 | | | NG0700 | | | | 8.258 | 7,764 | 11,705 | 13,130 | 5.8 | | | NG0750 | | | | 8.758 | 7,911 | 11,835 | 13,680 | 6.1 | _ ' | | NG0800 | | | | 9.258 | 8,265 | 12,266 | 14,770 | 6.5 | L ₂ | | NG0900 | | | | 10.258 | 8,743 | 12,782 | 16,420 | 7.2 | 1.1 | | NG1000 | | | | 11.258 | 9,204 | 13,261 | 18,060 | 7.9 | - 1 | | NG1100 | | | | 12.258 | 9,648 | 13,710 | 19,700 | 8.6 | _ | | NG1200 | | | | 13.258 | 10,074 | 14,133 | 21,340 | 9.3 | | | NG1400 | | | | 15.258 | 10,886 | 14,916 | 24,620 | 10.8 | ④ F = .080 | | NG1600 | | | | 17.258 | 11,648 | 15,631 | 27,910 | 12.3 | Bearing corners are | | NG1800 | | | | 19.258 | 12,367 | 16,291 | 31,190 | 13.7 | normally chamfered | | NG2000 | | | | 21.258 | 13,044 | 16,907 | 34,470 | 15.8 | | | NG2200 | | | | 23.258 | 13,685 | 17,486 | 37,757 | 16.8 | | | NG2500 | | | | 26.258 | 14,591 | 18,295 | 42,680 | 19.5 | | | NG3000 | | | | 31.258 | 15,963 | 19,519 | 50,890 | 23.3 | | | NG3500 | | | | 36.258 | 17,195 | 20,622 | 59,100 | 27.1 | | | NG4000 | CPO 39.99 | 98 42.0003 | 3 40.742 | 41.258 | 18,307 | 21,630 | 67,310 | 30.8 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Open Endurakote-Plated **Endura-Slim Bearing Selections** Type X – FOUR-POINT CONTACT A Conrad-assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications. | | NAA Series | | | | | | | | | | | | | | | |-------------------|------------|-----------------|-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--|--|--| | I/ AVD ON | | Dimension | s in Inche | S | | | Capaci | ties① | | | | | | | | | KAYDON
Bearing | Size | | Land Diameters | | Dynamic | | | Static2 | | | Approx.
Wt. in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | | | NAA10XL0 | 1.0000 | 1.3752 | 1.140 | 1.235 | 247 | 370 | 110 | 290 | 730 | 170 | .026 | | | | | | NAA15XL0 | 1.5000 | 1.8752 | 1.640 | 1.735 | 296 | 460 | 187 | 400 | 1,000 | 340 | .039 | | | | | | NAA17XL0 | 1.7500 | 2.1252 | 1.890 | 1.985 | 319 | 500 | 232 | 460 | 1,140 | 440 | .045 | | | | | | NA Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--| | KANDON | D | imension | s in Inche | 2S | | | Capaci | ties① | | | | | | | KAYDON
Bearing | Si | ze | Land Diameters | | | Dynamic | • | | Static@ | | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | NA020XP0 | 2.0000 | 2.5002 | 2.186 | 2.314 | 514 | 790 | 434 | 680 | 1,710 | 770 | .10 | | | | NA025XP0 | 2.5000 | 3.0002 | 2.686 | 2.814 | 583 | 910 | 601 | 830 | 2,090 | 1,150 | .13 | | | | NA030XP0 | 3.0000 | 3.5002 | 3.186 | 3.314 | 643 | 1,010 | 785 | 990 | 2,470 | 1,600 | .15 | | | | NA035XP0 | 3.5000 | 4.0002 | 3.686 | 3.814 | 701 | 1,110 | 986 | 1,140 | 2,850 | 2,130 | .18 | | | | NA040XP0 | 3.9998 | 4.5003 | 4.186 | 4.314 | 756 | 1,210 | 1,205 | 1,290 | 3,220 | 2,740 | .19 | | | | NA042XP0 | 4.2498 | 4.7503 | 4.436 | 4.564 | 783 | 1,260 | 1,321 | 1,370 | 3,410 | 3,070 | .20 | | | | NA045XP0 | 4.4998 | 5.0003 | 4.686 | 4.814 | 809 | 1,310 | 1,441 | 1,440 | 3,600 | 3,420 | .22 | | | | NA047XP0 | 4.7498 | 5.2503 | 4.936 | 5.064 | 834 | 1,350 | 1,565 | 1,520 | 3,790 | 3,790 | .23 | | | | NA050XP0 | 4.9998 | 5.5003 | 5.186 | 5.314 | 859 | 1,400 | 1,693 | 1,590 | 3,980 | 4,180 | .24 | | | | NA055XP0 | 5.4998 | 6.0003 | 5.686 | 5.814 | 908 | 1,480 | 1,959 | 1,750 | 4,360 | 5,020 | .25 | | | | NA060XP0 | 5.9998 | 6.5003 | 6.186 | 6.314 | 955 | 1,570 | 2,240 | 1,900 | 4,740 | 5,930 | .28 | | | | NA065XP0 | 6.4998 | 7.0003 | 6.686 | 6.814 | 1,001 | 1,650 | 2,535 | 2,050 | 5,120 | 6,910 | .30 | | | | NA070XP0 | 6.9998 | 7.5003 | 7.186 | 7.314 | 1,046 | 1,730 | 2,844 | 2,200 | 5,500 | 7,980 | .31 | | | | NA075XP0 | 7.4998 | 8.0003 | 7.686 | 7.814 | 1,089 | 1,810 | 3,165 | 2,350 | 5,880 | 9,120 | .34 | | | | NA080XP0 | 7.9998 | 8.5003 | 8.186 | 8.314 | 1,131 | 1,890 | 3,499 | 2,500 | 6,260 | 10,330 | .38 | | | | NA090XP0 | 8.9998 |
9.5003 | 9.186 | 9.314 | 1,212 | 2,040 | 4,204 | 2,810 | 7,020 | 12,990 | .44 | | | | NA100XP0 | 9.9998 | 10.5003 | 10.186 | 10.314 | 1,289 | 2,180 | 4,956 | 3,110 | 7,780 | 15,940 | .50 | | | | NA110XP0 | 10.9998 | 11.5003 | 11.186 | 11.314 | 1,362 | 2,320 | 5,750 | 3,410 | 8,540 | 19,210 | .52 | | | | NA120XP0 | 11.9998 | 12.5003 | 12.186 | 12.314 | 1,433 | 2,450 | 6,587 | 3,720 | 9,300 | 22,770 | .56 | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ^{3 &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type X – Open Endurakote-Plated Endura-Slim Bearings, FOUR-POINT CONTACT | NB Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--| | I/AWD ON | D | imension | s in Inche | S | | | Capaci | ties① | | | | | | | KAYDON
Bearing | Si | ze | Land Dia | meters | | Dynamic | | | Static@ | | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | NB020XP0 | 2.0000 | 2.6252 | 2.231 | 2.393 | 758 | 1,130 | 658 | 930 | 2,340 | 1,080 | .16 | | | | NB025XP0 | 2.5000 | 3.1252 | 2.731 | 2.893 | 848 | 1,290 | 895 | 1,140 | 2,840 | 1,600 | .19 | | | | NB030XP0 | 3.0000 | 3.6252 | 3.231 | 3.393 | 933 | 1,440 | 1,159 | 1,340 | 3,350 | 2,220 | .24 | | | | NB035XP0 | 3.5000 | 4.1252 | 3.731 | 3.893 | 1,014 | 1,590 | 1,450 | 1,540 | 3,860 | 2,940 | .27 | | | | NB040XP0 | 3.9998 | 4.6253 | 4.231 | 4.393 | 1,091 | 1,720 | 1,764 | 1,750 | 4,370 | 3,770 | .30 | | | | NB042XP0 | 4.2498 | 4.8753 | 4.481 | 4.643 | 1,120 | 1,780 | 1,917 | 1,830 | 4,570 | 4,170 | .31 | | | | NB045XP0 | 4.4998 | 5.1253 | 4.731 | 4.893 | 1,165 | 1,850 | 2,103 | 1,950 | 4,880 | 4,690 | .33 | | | | NB047XP0 | 4.7498 | 5.3753 | 4.981 | 5.143 | 1,193 | 1,900 | 2,265 | 2,030 | 5,080 | 5,140 | .34 | | | | NB050XP0 | 4.9998 | 5.6253 | 5.231 | 5.393 | 1,236 | 1,980 | 2,463 | 2,150 | 5,380 | 5,720 | .38 | | | | NB055XP0 | 5.4998 | 6.1253 | 5.731 | 5.893 | 1,304 | 2,100 | 2,844 | 2,360 | 5,890 | 6,850 | .41 | | | | NB060XP0 | 5.9998 | 6.6253 | 6.231 | 6.393 | 1,371 | 2,220 | 3,247 | 2,560 | 6,400 | 8,080 | .44 | | | | NB065XP0 | 6.4998 | 7.1253 | 6.731 | 6.893 | 1,435 | 2,340 | 3,668 | 2,760 | 6,910 | 9,410 | .47 | | | | NB070XP0 | 6.9998 | 7.6253 | 7.231 | 7.393 | 1,498 | 2,450 | 4,109 | 2,970 | 7,420 | 10,850 | .50 | | | | NB075XP0 | 7.4998 | 8.1253 | 7.731 | 7.893 | 1,559 | 2,560 | 4,568 | 3,170 | 7,920 | 12,380 | .53 | | | | NB080XP0 | 7.9998 | 8.6253 | 8.231 | 8.393 | 1,618 | 2,670 | 5,045 | 3,370 | 8,430 | 14,020 | .57 | | | | NB090XP0 | 8.9998 | 9.6253 | 9.231 | 9.393 | 1,732 | 2,880 | 6,050 | 3,780 | 9,450 | 17,600 | .66 | | | | NB100XP0 | 9.9998 | 10.6253 | 10.231 | 10.393 | 1,841 | 3,080 | 7,121 | 4,190 | 10,460 | 21,580 | .73 | | | | NB110XP0 | 10.9998 | 11.6253 | 11.231 | 11.393 | 1,945 | 3,280 | 8,254 | 4,590 | 11,480 | 25,970 | .75 | | | | NB120XP0 | 11.9998 | 12.6253 | 12.231 | 12.393 | 2,045 | 3,470 | 9,446 | 5,000 | 12,500 | 30,770 | .83 | | | | NB140XP0 | 13.9998 | 14.6253 | 14.231 | 14.393 | 2,234 | 3,840 | 11,994 | 5,810 | 14,530 | 41,580 | 1.05 | | | | NB160XP0 | 15.9998 | 16.6253 | 16.231 | 16.393 | 2,410 | 4,190 | 14,750 | 6,620 | 16,560 | 54,020 | 1.20 | | | | NB180XP0 | 17.9998 | 18.6253 | 18.231 | 18.393 | 2,576 | 4,520 | 17,694 | 7,440 | 18,590 | 68,090 | 1.35 | | | | NB200XP0 | 19.9998 | 20.6253 | 20.231 | 20.393 | 2,731 | 4,850 | 20,813 | 8,250 | 20,620 | 83,780 | 1.50 | | | - ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. - $\ensuremath{\mathfrak{G}} \text{ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.}$ #### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ## Type X – Open Endurakote-Plated Endura-Slim Bearings, FOUR-POINT CONTACT | NC Series | | | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|--|--| | KANDON | D | imension | s in Inche | !S | | | Capaci | ities① | | | | | | | KAYDON
Bearing | Si | ze | Land Dia | ameters | | Dynamic | • | | Static@ | | Approx. Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | NC040XP0 | 3.9998 | 4.7503 | 4.277 | 4.473 | 1,417 | 2,210 | 2,326 | 2,100 | 5,260 | 4,600 | .45 | | | | NC042XP0 | 4.2498 | 5.0003 | 4.527 | 4.723 | 1,464 | 2,290 | 2,541 | 2,220 | 5,560 | 5,140 | .47 | | | | NC045XP0 | 4.4998 | 5.2503 | 4.777 | 4.973 | 1,510 | 2,380 | 2,762 | 2,340 | 5,860 | 5,710 | .48 | | | | NC047XP0 | 4.7498 | 5.5003 | 5.027 | 5.223 | 1,556 | 2,460 | 2,991 | 2,460 | 6,160 | 6,320 | .50 | | | | NC050XP0 | 4.9998 | 5.7503 | 5.277 | 5.473 | 1,600 | 2,540 | 3,226 | 2,590 | 6,460 | 6,950 | .58 | | | | NC055XP0 | 5.4998 | 6.2503 | 5.777 | 5.973 | 1,687 | 2,690 | 3,717 | 2,830 | 7,060 | 8,300 | .59 | | | | NC060XP0 | 5.9998 | 6.7503 | 6.277 | 6.473 | 1,770 | 2,840 | 4,234 | 3,070 | 7,660 | 9,770 | .63 | | | | NC065XP0 | 6.4998 | 7.2503 | 6.777 | 6.973 | 1,851 | 2,990 | 4,775 | 3,310 | 8,270 | 11,370 | .68 | | | | NC070XP0 | 6.9998 | 7.7503 | 7.277 | 7.473 | 1,931 | 3,130 | 5,341 | 3,550 | 8,870 | 13,080 | .73 | | | | NC075XP0 | 7.4998 | 8.2503 | 7.777 | 7.973 | 2,007 | 3,270 | 5,930 | 3,790 | 9,470 | 14,910 | .78 | | | | NC080XP0 | 7.9998 | 8.7503 | 8.277 | 8.473 | 2,082 | 3,410 | 6,542 | 4,030 | 10,070 | 16,870 | .84 | | | | NC090XP0 | 8.9998 | 9.7503 | 9.277 | 9.473 | 2,226 | 3,670 | 7,830 | 4,510 | 11,270 | 21,130 | .94 | | | | NC100XP0 | 9.9998 | 10.7503 | 10.277 | 10.473 | 2,364 | 3,930 | 9,201 | 4,990 | 12,470 | 25,880 | 1.06 | | | | NC110XP0 | 10.9998 | 11.7503 | 11.277 | 11.473 | 2,496 | 4,180 | 10,651 | 5,470 | 13,680 | 31,110 | 1.16 | | | | NC120XP0 | 11.9998 | 12.7503 | 12.277 | 12.473 | 2,622 | 4,420 | 12,174 | 5,950 | 14,880 | 36,830 | 1.25 | | | | NC140XP0 | 13.9998 | 14.7503 | 14.277 | 14.473 | 2,862 | 4,890 | 15,434 | 6,910 | 17,280 | 49,690 | 1.52 | | | | NC160XP0 | 15.9998 | 16.7503 | 16.277 | 16.473 | 3,086 | 5,330 | 18,955 | 7,880 | 19,690 | 64,480 | 1.73 | | | | NC180XP0 | 17.9998 | 18.7503 | 18.277 | 18.473 | 3,295 | 5,760 | 22,712 | 8,840 | 22,090 | 81,190 | 1.94 | | | | NC200XP0 | 19.9998 | 20.7503 | 20.277 | 20.473 | 3,492 | 6,170 | 26,695 | 9,800 | 24,500 | 99,830 | 2.16 | | | | NC250XP0 | 24.9998 | 25.7503 | 25.277 | 25.473 | 3,941 | 7,140 | 37,518 | 12,200 | 30,510 | 154,800 | 2.69 | | | | NC300XP0 | 29.9998 | 30.7503 | 30.277 | 30.473 | 4,338 | 8,050 | 49,436 | 14,610 | 36,520 | 221,900 | 3.21 | | | | ND Series | | | | | | | | | | | | |-------------------|---------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | | D | imension | s in Inche | !S | | | Capaci | ties① | | | | | KAYDON
Bearing | Si | ze | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | ND040XP0 | 3.9998 | 5.0003 | 4.370 | 4.630 | 2,311 | 3,520 | 3,901 | 3,080 | 7,700 | 6,930 | .78 | | ND042XP0 | 4.2498 | 5.2503 | 4.620 | 4.880 | 2,355 | 3,600 | 4,196 | 3,190 | 7,980 | 7,580 | .83 | | ND045XP0 | 4.4998 | 5.5003 | 4.870 | 5.130 | 2,454 | 3,770 | 4,602 | 3,420 | 8,550 | 8,550 | .88 | | ND047XP0 | 4.7498 | 5.7503 | 5.120 | 5.380 | 2,496 | 3,860 | 4,916 | 3,530 | 8,840 | 9,280 | .94 | | ND050XP0 | 4.9998 | 6.0003 | 5.370 | 5.630 | 2,592 | 4,020 | 5,348 | 3,760 | 9,410 | 10,350 | 1.00 | | ND055XP0 | 5.4998 | 6.5003 | 5.870 | 6.130 | 2,725 | 4,260 | 6,134 | 4,100 | 10,260 | 12,310 | 1.06 | | ND060XP0 | 5.9998 | 7.0003 | 6.370 | 6.630 | 2,855 | 4,490 | 6,961 | 4,450 | 11,120 | 14,450 | 1.16 | | ND065XP0 | 6.4998 | 7.5003 | 6.870 | 7.130 | 2,980 | 4,720 | 7,826 | 4,790 | 11,970 | 16,760 | 1.22 | | ND070XP0 | 6.9998 | 8.0003 | 7.370 | 7.630 | 3,103 | 4,940 | 8,730 | 5,130 | 12,830 | 19,240 | 1.31 | | ND075XP0 | 7.4998 | 8.5003 | 7.870 | 8.130 | 3,222 | 5,160 | 9,669 | 5,470 | 13,680 | 21,890 | 1.41 | | ND080XP0 | 7.9998 | 9.0003 | 8.370 | 8.630 | 3,338 | 5,370 | 10,643 | 5,810 | 14,540 | 24,710 | 1.53 | | ND090XP0 | 8.9998 | 10.0003 | 9.370 | 9.630 | 3,561 | 5,790 | 12,693 | 6,500 | 16,250 | 30,870 | 1.72 | | ND100XP0 | 9.9998 | 11.0003 | 10.370 | 10.630 | 3,776 | 6,190 | 14,872 | 7,180 | 17,960 | 37,710 | 1.88 | | ND110XP0 | 10.9998 | 12.0003 | 11.370 | 11.630 | 3,981 | 6,570 | 17,173 | 7,870 | 19,670 | 45,230 | 2.06 | | ND120XP0 | 11.9998 | 13.0003 | 12.370 | 12.630 | 4,178 | 6,950 | 19,590 | 8,550 | 21,380 | 53,440 | 2.25 | | ND140XP0 | 13.9998 | 15.0003 | 14.370 | 14.630 | 4,551 | 7,670 | 24,755 | 9,920 | 24,800 | 71,910 | 2.73 | | ND160XP0 | 15.9998 | 17.0003 | 16.370 | 16.630 | 4,899
 8,360 | 30,325 | 11,290 | 28,220 | 93,110 | 3.10 | | ND180XP0 | 17.9998 | 19.0003 | 18.370 | 18.630 | 5,226 | 9,030 | 36,268 | 12,650 | 31,640 | 117,000 | 3.48 | | ND200XP0 | 19.9998 | 21.0003 | 20.370 | 20.630 | 5,534 | 9,670 | 42,561 | 14,020 | 35,060 | 143,700 | 3.85 | | ND210XP0 | 20.9998 | 22.0003 | 21.370 | 21.630 | 5,682 | 9,980 | 45,826 | 14,710 | 36,770 | 158,100 | 4.04 | | ND250XP0 | 24.9998 | 26.0003 | 25.370 | 25.630 | 6,235 | 11,180 | 59,649 | 17,440 | 43,610 | 222,400 | 4.79 | | ND300XP0 | 29.9998 | 31.0003 | 30.370 | 30.630 | 6,856 | 12,600 | 78,447 | 20,860 | 52,160 | 318,100 | 5.73 | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $^{@ \} Static \ capacities \ are \ non-brinell \ limits \ based \ on \ rigid \ support \ from \ the \ shaft \ and \ housing.$ ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type X – Open Endurakote-Plated Endura-Slim Bearings, FOUR-POINT CONTACT | | | | | | NF Se | | | | | | | |-------------------|---------|-----------------|------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | W. B. V. B. B. V. | D | imension | s in Inche | | | | Capaci | ties① | | | | | KAYDON
Bearing | Si | ze | Land Dia | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | Number | Bore | Outside
Dia. | Lı | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | NF040XP0 | 3.9998 | 5.5003 | 4.555 | 4.945 | 4,665 | 6,830 | 8,312 | 5,360 | 13,400 | 12,730 | 1.9 | | NF042XP0 | 4.2498 | 5.7503 | 4.805 | 5.195 | 4,795 | 7,070 | 8,993 | 5,640 | 14,110 | 14,110 | 2.0 | | NF045XP0 | 4.4998 | 6.0003 | 5.055 | 5.445 | 4,923 | 7,300 | 9,695 | 5,930 | 14,810 | 15,550 | 2.1 | | NF047XP0 | 4.7498 | 6.2503 | 5.305 | 5.695 | 5,048 | 7,530 | 10,416 | 6,210 | 15,520 | 17,070 | 2.2 | | NF050XP0 | 4.9998 | 6.5003 | 5.555 | 5.945 | 5,172 | 7,760 | 11,157 | 6,490 | 16,220 | 18,660 | 2.3 | | NF055XP0 | 5.4998 | 7.0003 | 6.055 | 6.445 | 5,415 | 8,200 | 12,696 | 7,050 | 17,630 | 22,040 | 2.5 | | NF060XP0 | 5.9998 | 7.5003 | 6.555 | 6.945 | 5,651 | 8,630 | 14,311 | 7,620 | 19,050 | 25,710 | 2.7 | | NF065XP0 | 6.4998 | 8.0003 | 7.055 | 7.445 | 5,880 | 9,050 | 15,993 | 8,180 | 20,460 | 29,660 | 2.9 | | NF070XP0 | 6.9998 | 8.5003 | 7.555 | 7.945 | 6,103 | 9,460 | 17,744 | 8,750 | 21,870 | 33,890 | 3.2 | | NF075XP0 | 7.4998 | 9.0003 | 8.055 | 8.445 | 6,323 | 9,870 | 19,568 | 9,310 | 23,280 | 38,410 | 3.4 | | NF080XP0 | 7.9998 | 9.5003 | 8.555 | 8.945 | 6,535 | 10,260 | 21,453 | 9,880 | 24,690 | 43,200 | 3.5 | | NF090XP0 | 8.9998 | 10.5003 | 9.555 | 9.945 | 6,947 | 11,030 | 25,410 | 11,000 | 27,510 | 53,640 | 3.9 | | NF100XP0 | 9.9998 | 11.5003 | 10.555 | 10.945 | 7,342 | 11,770 | 29,608 | 12,130 | 30,330 | 65,210 | 4.3 | | NF110XP0 | 10.9998 | 12.5003 | 11.555 | 11.945 | 7,721 | 12,490 | 34,032 | 13,260 | 33,150 | 77,910 | 4.8 | | NF120XP0 | 11.9998 | 13.5003 | 12.555 | 12.945 | 8,084 | 13,190 | 38,666 | 14,390 | 35,970 | 91,730 | 5.2 | | NF140XP0 | 13.9998 | 15.5003 | 14.555 | 14.945 | 8,775 | 14,530 | 48,556 | 16,650 | 41,620 | 122,800 | 6.0 | | NF160XP0 | 15.9998 | 17.5003 | 16.555 | 16.945 | 9,421 | 15,820 | 59,200 | 18,900 | 47,260 | 158,300 | 7.1 | | NF180XP0 | 17.9998 | 19.5003 | 18.555 | 18.945 | 10,028 | 17,060 | 70,537 | 21,160 | 52,900 | 198,400 | 7.9 | | NF200XP0 | 19.9998 | 21.5003 | 20.555 | 20.945 | 10,602 | 18,250 | 82,528 | 23,420 | 58,550 | 243,000 | 8.9 | | NF250XP0 | 24.9998 | 26.5003 | 25.555 | 25.945 | 11,909 | 21,070 | 115,037 | 29,060 | 72,650 | 374,200 | 10.9 | | NF300XP0 | 29.9998 | 31.5003 | 30.555 | 30.945 | 13,065 | 23,720 | 150,708 | 34,700 | 86,760 | 533,600 | 13.0 | | NF350XP0 | 34.9998 | 36.5003 | 35.555 | 35.945 | 14,100 | 26,220 | 189,106 | 40,350 | 100,900 | 721,200 | 15.1 | | NF400XP0 | 39.9998 | 41.5003 | 40.555 | 40.945 | 15,034 | 28,620 | 229,832 | 45,990 | 115,000 | 937,100 | 17.2 | | | | imension | s in Inche | S | | | Capac | ities① | | | | | |----------------------|---------|--------------------|------------------|------------------|------------------|------------------|--------------------|------------------|--------------------|------------------------|----------------|-----------------------------------| | KAYDON
Bearing | Si | ze | Land Dia | meters | | Dynamic | : | | Static2 | | Approx. Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | Snap-over separator
1/2" balls | | NG040XP0 | 3.9998 | 6.0003 | 4.742 | 5.258 | 7,979 | 11,260 | 14,966 | 8,210 | 20,520 | 20,520 | 3.6 | 1/2 Dalis | | NG042XP0 | 4.2498 | 6.2503 | 4.992 | 5.508 | 7,917 | 11,260 | 15,592 | 8,210 | 20,520 | 21,550 | 3.8 | ─ 1.000 ─ | | NG045XP0 | 4.4998 | 6.5003 | 5.242 | 5.758 | 8,205 | 11,750 | 16,930 | 8,760 | 21,890 | 24,080 | 4.0 | F ¬ | | NG047XP0 | 4.7498 | 6.7503 | 5.492 | 6.008 | 8,487 | 12,230 | 18,306 | 9,300 | 23,260 | 26,740 | 4.1 | · 🔰 | | NG050XP0 | 4.9998 | 7.0003 | 5.742 | 6.258 | 8,762 | 12,710 | 19,721 | 9,850 | 24,620 | 29,550 | 4.3 | | | NG055XP0 | 5.4998 | 7.5003 | 6.242 | 6.758 | 8,979 | 13,180 | 21,896 | 10,400 | 25,990 | 33,790 | 4.7 | | | NG060XP0 | 5.9998 | 8.0003 | 6.742 | 7.258 | 9,503 | 14,090 | 24,956 | 11,490 | 28,730 | 40,220 | 5.1 | | | NG065XP0 | 6.4998 | 8.5003 | 7.242 | 7.758 | 9,713 | 14,530 | 27,327 | 12,040 | 30,100 | 45,140 | 5.4 | 1.000 | | NG070XP0 | 6.9998 | 9.0003 | 7.742 | 8.258 | 10,208 | 15,400 | 30,636 | 13,130 | 32,830 | 52,530 | 5.8 | | | NG075XP0 | 7.4998 | 9.5003 | 8.242 | 8.758 | 10,410 | 15,820 | 33,196 | 13,680 | 34,200 | 58,140 | 6.1 | | | NG080XP0 | 7.9998 | 10.0003 | 8.742 | 9.258 | 10,882 | 16,650 | 36,743 | 14,770 | 36,940 | 66,480 | 6.5 | L ₂ | | NG090XP0 | 8.9998 | 11.0003 | 9.742 | 10.258 | 11,526 | 17,870 | 43,240 | 16,420 | 41,040 | 82,080 | 7.2 | Lı | | NG100XP0 | 9.9998 | 12.0003 | 10.742 | 11.258 | 12,147 | 19,040 | 50,124 | 18,060 | 45,140 | 99,320 | 7.9 | | | NG110XP0 | 10.9998 | 13.0003 | 11.742 | 12.258 | 12,739 | 20,180 | 57,347 | 19,700 | 49,250 | 118,200 | 8.6 | | | NG120XP0 | | 14.0003 | 12.742 | 13.258 | 13,315 | 21,280 | 64,935 | 21,340 | 53,350 | 138,700 | 9.3 | | | NG140XP0 | | 16.0003 | 14.742 | 15.258 | 14,404 | 23,410 | 81,056 | 24,620 | 61,560 | 184,700 | 10.8 | 3 F = .080 | | NG160XP0 | | 18.0003 | 16.742 | 17.258 | 15,425 | 25,450 | 98,373 | 27,910 | 69,770 | 237,200 | 12.3 | Bearing corners are | | NG180XP0 | | 20.0003 | 18.742 | 19.258 | 16,386 | 27,410 | 116,793 | 31,190 | 77,980 | 296,300 | 13.7 | normally chamfered | | NG200XP0 | | 22.0003 | 20.742 | 21.258 | 17,293 | 29,300 | 136,238 | 34,470 | 86,180 | 362,000 | 15.8 | , | | NG220XP0 | | 24.0003 | 22.742 | 23.258 | 18,152 | 31,130 | 156,625 | 37,760 | 94,390 | 434,200 | 17.3 | | | NG250XP0 | | 27.0003 | 25.742 | 26.258 | 19,360 | 33,780 | 188,838 | 42,680 | 106,700 | 554,900 | 19.5 | | | NG300XP0 | | 32.0003 | 30.742 | 31.258 | 21,200 | 37,980 | 246,541 | 50,890 | 127,200 | 788,800 | 23.3 | | | NG350XP0
NG400XP0 | | 37.0003
42.0003 | 35.742
40.742 | 36.258
41.258 | 22,845
24,332 | 41,970
45,770 | 308,527
374,256 | 59,100
67,310 | 147,700
168,300 | 1,064,000
1,380,000 | 27.1
30.8 | | | | | | | | | | | | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Precision Tolerances and Recommended Fits for Reali-Slim Ball Bearings in Normal Applications | Type C with Endurakote Plating – Precision Class 1 | | | | | | | | | | | | | |--|--------------------------------------|--------------------------------------|---------------|---------------|--|------------------------------------|-----------------|------------------------|---------------|------|-------------------------------------|-------------| | Bearing | | ring
eters | Radial Run | | Rotating
Duplex DF | Shaft or
Mounting | | Stationar
Duplex DB | | | Bearing D
Cleara | | | Size
(Inch
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
0000 | Shaft Di
Nom | iameter
ninal | Housin
Nom | • | (Type "
"C" o
Befo
Install | nly)
ore | | 010 | 0006 | 0007 | .0005 | .0008 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0016 | | 015 | 0007 | 0007 | .0006 | .0008 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0012 | .0018 | | 017 | 0008 | 0007 | .0008 | .0010 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0024 | | 020 | 0008 | 0007 | .0008 | .0010 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0024 | | 025 | 0008 | 0007 | .0008 | .0010 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0024 | | 030 | 0008 | 0008 | .0008 | .0010 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0024 | | 035 | 0010 | 0008 | .0010 | .0012 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0016 | .0028 | | 040 | 0009 | 0007 | .0010 | .0012 | +.0009 | +.0007 | 0009 | 0018 | 0007 | 0014 | .0016 | .0028 | | 042 | 0009 | 0009 | .0010 | .0014 | +.0009 | +.0009
 0009 | 0018 | 0009 | 0018 | .0016 | .0028 | | 045 | 0009 | 0009 | .0010 | .0014 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0016 | .0028 | | 047 | 0011 | 0009 | .0012 | .0014 | +.0011 | +.0009 | 0011 | 0022 | 0009 | 0018 | .0020 | .0034 | | 050 | 0011 | 0009 | .0012 | .0014 | +.0011 | +.0009 | 0011 | 0022 | 0009 | 0018 | .0020 | .0034 | | 055 | 0011 | 0011 | .0012 | .0016 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0034 | | 060 | 0011 | 0011 | .0012 | .0016 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0034 | | 065 | 0011 | 0011 | .0012 | .0016 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0034 | | 070 | 0011 | 0013 | .0012 | .0016 | +.0011 | +.0013 | 0011 | 0022 | 0013 | 0026 | .0024 | .0042 | | 075 | 0013 | 0013 | .0016 | .0018 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0042 | | 080 | 0013 | 0013 | .0016 | .0018 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0042 | | 090 | 0013 | 0013 | .0016 | .0018 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0042 | | 100 | 0015 | 0015 | .0018 | .0020 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0048 | | 110 | 0015 | 0015 | .0018 | .0020 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0048 | | 120 | 0015 | 0015 | .0018 | .0020 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0048 | | 140 | 0017 | 0017 | .0018 | .0020 | +.0017 | +.0017 | 0017 | 0034 | 0017 | 0034 | .0032 | .0052 | | 160 | 0019 | 0019 | .0018 | .0020 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0056 | | 180 | 0019 | 0019 | .0020 | .0020 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0056 | | 200 | 0021 | 0021 | .0020 | .0020 | +.0021 | +.0021 | 0021 | 0042 | 0021 | 0042 | .0040 | .0060 | | 210 | 0021 | 0021 | .0020 | .0020 | +.0021 | +.0021 | 0021 | 0042 | 0021 | 0042 | .0040 | .0060 | | 220 | 0021 | 0021 | .0020 | .0020 | +.0021 | +.0021 | 0021 | 0042 | 0021 | 0042 | .0040 | .0060 | | 250 | 0031 | 0031 | .0020 | .0020 | +.0031 | +.0031 | 0031 | 0062 | 0031 | 0062 | .0060 | .0080 | | 300 | 0031 | 0031 | .0020 | .0020 | +.0031 | +.0031 | 0031 | 0062 | 0031 | 0062 | .0060 | .0080 | | 350 | 0041 | 0041 | .0020 | .0020 | +.0041 | +.0041 | 0041 | 0082 | 0041 | 0082 | .0080 | .0100 | | 400 | 0041 | 0041 | .0020 | .0020 | +.0041 | +.0041 | 0041 | 0082 | 0041 | 0082 | .0080 | .0100 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. All dimensions in inches. Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 | Bearing Size (Inch Searing Radial & Axial Rotating Shaft or Duplex DF Mounting Size (Inch Series) Mounting Size (Inch Series) Mounting Shaft Sore (Inch Series) Mounting Shaft Sore (Inch Series) Mounting Shaft Housing Shaft Housing Shaft Housing Shaft Housing Shaft Shaft Housing Shaft Housing Shaft Shaft Housing Shaft Shaft Housing Shaft | Type X and A with Endurakote Plating – Precision Class 1 | | | | | | | | | | | | | |--|--|-----------------|-----------------|-------|-------|---------------------|-----------------|------|------|------|------|---------------------|-------| | Size (Inch Series) Bore Sore (Sories) Sore Sore (Inch Series) Sore (Inch | Bearing | | | | | | | | | | | | | | 015 -0007 -0007 .0004 .0004 +.0007 +.0007 0014 0007 0014 .0017 0018 0007 .0015 .0015 .0005 .0008 +.0007 0008 0007 .0014 .0012 .0022 020 0008 0007 .0005 .0005 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 025 0008 0006 .0006 .0006 +.0008 +.0008 0016 0008 0016 .0012 .0022 030 0008 .0006 .0006 +.0008 +.0008 0008 0016 0016 .0016 .0016 .0026 040 0009 0008 .0006 +.0009 +.0007 0009 0018 .0016 .0026 .0016 .0026 .0016 .0026 .0016 .0026 .0016 .0026 .0016 .0026 .0016 .0026 .0030 .0030 | Size
(Inch | Bore
Nominal | O.D.
Nominal | | | Diameter
Nominal | Bore
Nominal | | | | - | "C" only)
Before | | | 017 -0008 -0007 .0005 .0005 +.0008 +.0007 0008 0007 0014 .0012 .0022 020 0008 0007 .0005 .0005 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 030 0008 0008 .0006 .0006 +.0008 +.0008 0016 0008 .0016 .0012 .0022 035 0010 0008 .0006 .0006 +.0008 +.0001 0020 0008 0016 .0016 .0016 .0026 040 0009 0007 .0006 .0006 +.0009 +.0009 0019 0014 .0016 .0026 042 0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0016 .0026 047 0011 0009 .0008 .0008 +.0011 +.0009 0018 0009 | 010 | 0006 | 0007 | .0003 | .0004 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0015 | | 020 -0008 -0007 .0005 .0008 +,0008 +,0007 -,0008 -,0016 -,0007 -,0014 .0012 .0022 025 -,0008 -,0008 -,0008 -,0008 -,0008 -,0016 -,0007 -,0014 ,0012 ,0022 035 -,0010 -,0008 ,0006 ,0006 +,0008 +,0008 -,0010 -,0008 -,0016 ,0016 ,0016 ,0020 040 -,0009 -,0007 ,0008 ,0006 ,0006 +,0009 +,0009 -,0018 ,0007 -,0014 ,0016 ,0026 042 -,0009 -,0009 ,0008 ,0009 +,0009 -,0018 -,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0009 -,0018 ,0001 ,0016 ,0026 047 -,0011 -,0009 ,0008 ,0008 | 015 | 0007 | 0007 | .0004 | .0004 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0012 | .0017 | | 025 -0008 -0007 .0005 .0005 +.0008 +.0008 0016 0007 0014 .0012 .0022 030 0008 0008 .0006 .0006 .0006 +.0008 +.0008 0016 0008 0016 .0016 .0012 .0022 035 0010 0008 .0001 +.0009 +.0007 0008 .0016 .00016 .0006 .0006 +.0009 +.0009 0009 0018 .0016 .0026 042 0009 0009 .0008 .0008 +.0009 +.0009 0018 0007 0118 .0016 .0026 045 0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 018 .0016 .0026 047 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 .0009 018 .0020 .0030 055 0011 | 017 | 0008 | 0007 | .0005 | .0005 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0022 | | 030 -0008 -0008 .0006 .0006 +.0008 +.0008 0016 0008 .0016 .0012 .0022 035 0010 0008 .0006 .0006 +.0010 +.0008 0010 0020 0008 0016 .0016 .0026 040 0009 0009 .0006 .0006 +.0009 +.0007 0009 0018 0009 0014 .0016 .0026 045 0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0016 .0026 047 0011 0009 .0008 .0008 +.0011 +.0009 0018 0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 | 020 | 0008 | 0007 | .0005 | .0005 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0022 | | 035 -0010 -0008 .0006 .0006 +.0010 +.0008 0010 0020 0008 0016 .0016 .0026 040 0009 0007 .0006 .0006 +.0009 +.0009 0009 0018 0007 0014 .0016 .0026 042 0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0009 0018 .0016 .0026 047 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0020 .0030 065 0011 0011 .0010 .0010 +.0011 | 025 | 0008 | 0007 | .0005 | .0005 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0022 | | 040 -0009 -0007 .0006 .0006 +.0009 +.0009 0018 0007 0014 .0016 .0026 042 0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0016 .0026 045 0009 0009 .0008 .0008 +.0009 +.0009 0011 0022 0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 055 0011 0010 .0010 +.0011 +.0011 +.0011 0012 0022 0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 065 0011 0013 .0010 .0011 +.0011 | 030 | 0008 | 0008 | .0006 | .0006 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0022 | | 042 -0009 -0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0016 .0026 045
-0009 0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0010 .0016 .0026 047 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0011 0011 0022 0009 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0011 0022 .0020 .0030 075 0013 0013 .0012 +.0013 | 035 | 0010 | 0008 | .0006 | .0006 | +.0010 | +.0008 | 0010 | 0020 | 0008 | 0016 | .0016 | .0026 | | 045 -0009 -0009 .0008 .0008 +.0009 +.0009 0018 0009 0018 .0009 0018 .0009 0018 .0009 0018 .0009 0018 .0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 065 0011 0013 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0020 .0030 075 0013 0013 .0012 +.0013 +.0013 0013 0013 0026 .0024 </th <td>040</td> <td>0009</td> <td>0007</td> <td>.0006</td> <td>.0006</td> <td>+.0009</td> <td>+.0007</td> <td>0009</td> <td>0018</td> <td>0007</td> <td>0014</td> <td>.0016</td> <td>.0026</td> | 040 | 0009 | 0007 | .0006 | .0006 | +.0009 | +.0007 | 0009 | 0018 | 0007 | 0014 | .0016 | .0026 | | 047 -0011 -0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0020 .0030 065 0011 0011 .0010 .0010 +.0011 +.0011 0012 0011 0022 .0020 .0030 070 0011 0013 .0010 .0012 +.0013 +.0013 0013 0026 .0024 .0034 075 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 | 042 | 0009 | 0009 | .0008 | .0008 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0016 | .0026 | | 050 0011 0009 .0008 .0008 +.0011 +.0009 0011 0022 0009 0018 .0020 .0030 055 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 065 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 070 0011 0013 .0010 .0011 +.0013 +.0013 0013 0026 .0024 .0024 .0034 080 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 .0012 +.0013 +.0013 0026 | 045 | 0009 | 0009 | .0008 | .0008 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0016 | .0026 | | 055 0011 0011 .0010 .0010 +.0011 +.0011 0022 0011 0022 .0020 .0030 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 065 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 070 0011 0013 .0010 .0011 +.0013 0011 0022 0013 0026 .0024 .0034 080 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 +.0013 +.0013 0013 0026 0013 0026 .0024 .0034 100 0015 0015 .0014 .0014 +.0015 +.0015 | 047 | 0011 | 0009 | .0008 | .0008 | +.0011 | +.0009 | 0011 | 0022 | 0009 | 0018 | .0020 | .0030 | | 060 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 065 0011 0011 .0010 .0010 +.0011 +.0011 0011 0022 0011 0022 .0020 .0030 070 0011 0013 .0010 .0010 +.0011 +.0013 0011 0022 0013 0026 .0024 .0034 080 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 0013 0026 .0024 .0034 100 0015 0014 .0014 +.0015 +.0015 0015 0030 0015 0030 .0028 .0038 110 0015 0015 .0014 .0014 | 050 | 0011 | 0009 | .0008 | .0008 | +.0011 | +.0009 | 0011 | 0022 | 0009 | 0018 | .0020 | .0030 | | 065 0011 0011 .0010 .0010 +.0011 +.0011 0022 0011 0022 .0020 .0030 070 0011 0013 .0010 .0010 +.0011 +.0013 0011 0022 0013 0026 .0024 .0034 075 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 .0024 .0034 080 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 .0013 +.0013 +.0013 0026 0013 0026 .0024 .0034 100 0015 0014 .0014 +.0015 +.0015 0015 0030 .0028 .0038 110 0015 0014 .0014 +.0015 +.0015 0015 0030 .0028 .0038 120 | 055 | 0011 | 0011 | .0010 | .0010 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0030 | | 070 -0011 -0013 .0010 .0010 +.0011 +.0013 0011 0022 0013 0026 .0024 .0034 075 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 0013 0026 0024 0034 080 0013 0013 0012 0012 +.0013 +.0013 0013 0026 0013 0026 0024 0034 090 0013 0013 0012 0013 +.0013 +.0013 0013 0026 0013 0026 | 060 | 0011 | 0011 | .0010 | .0010 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0030 | | 075 0013 0013 .0012 .0012 +.0013 +.0013 0013 0026 .0024 .0034 080 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 100 0015 0015 .0014 .0014 +.0015 +.0015 0015 0030 0015 0030 .0028 .0038 110 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 140 0015 0015 .0014 .0014 +.0015 +.0015 0015 0030 0015 | 065 | 0011 | 0011 | .0010 | .0010 | +.0011 | +.0011 | 0011 | 0022 | 0011 | 0022 | .0020 | .0030 | | 080 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 090 0013 0013 .0012 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 100 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 110 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 140 0015 0014 .0014 +.0015 +.0015 0015 0030 0015 0030 .0028 .0038 160 0017 0016 .0016 +.0017 +.0017 0017 0034 0017 0034 <td>070</td> <td>0011</td> <td>0013</td> <td>.0010</td> <td>.0010</td> <td>+.0011</td> <td>+.0013</td> <td>0011</td> <td>0022</td> <td>0013</td> <td>0026</td> <td>.0024</td> <td>.0034</td> | 070 | 0011 | 0013 | .0010 | .0010 | +.0011 | +.0013 | 0011 | 0022 | 0013 | 0026 | .0024 | .0034 | | 090 0013 0013 .0012 +.0013 +.0013 0026 0013 0026 .0024 .0034 100 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 110 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 140 0015 0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0017 0015 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 180 0017 0017 .0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 | 075 | 0013 | 0013 | .0012 | .0012 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0034 | | 100 0015 0015 .0014 .0014 +.0015 +.0015 0030 0030 .0028 .0038 110 0015 0015 .0014 .0014 +.0015 +.0015 0015 0030 0030 .0028 .0038 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 140 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0017 0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 180 0019 0019 .0018 .0018 +.0019 +.0019 0019 0034 0017 0034 | 080 | 0013 | 0013 | .0012 | .0012 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0034 | | 110 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 140 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0017 0017 .0016 .0016 +.0017 +.0017 0034 0017 0034 .0032 .0042 180 0017 0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 200 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 .0046 210 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 | 090 | 0013 | 0013 | .0012 | .0012 | +.0013 | +.0013 | 0013 | 0026 | 0013 | 0026 | .0024 | .0034 | | 120 0015 0015 .0014 .0014 +.0015 +.0015 0030 0030 .0028 .0038 140 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0017 0017 .0016 .0016 +.0017 +.0017 0034 0017 0034 .0032 .0042 180 0017 0017 .0016 .0016 +.0017 +.0017 0034 0017 0034 .0032 .0042 200 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 .0046 210 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 | 100 | 0015 | 0015 | .0014 | .0014 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0038 | | 140 0015 0015 .0014 .0014 +.0015 +.0015 0030 0015 0030 .0028 .0038 160 0017 0017 .0016 .0016 +.0017 +.0017 0034 0017 0034 .0032 .0042 180 0017 0017 .0016 .0016 +.0017 +.0017 0034 0017 0034 .0032 .0042 200 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 .0046 210 0019 0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0038 0019 0038 | 110 | 0015 | 0015 | .0014 | .0014 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0038 | | 160 0017 0017 .0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 180 0017 0017 .0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 200 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 210 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 | 120 | 0015 | 0015 | .0014 | .0014 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0038 | | 180 0017 0017 .0016 .0016 +.0017 +.0017 0017 0034 0017 0034 .0032 .0042 200 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 210 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 | 140 | 0015 | 0015 | .0014 | .0014 | +.0015 | +.0015 | 0015 | 0030 | 0015 | 0030 | .0028 | .0038 | | 200 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 210 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038
.0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 350 0021 0021 .0020 .0020 +.0021 +.0021 0042 0042 0042 .0040 | 160 | 0017 | 0017 | .0016 | .0016 | +.0017 | +.0017 | 0017 | 0034 | 0017 | 0034 | .0032 | .0042 | | 210 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 220 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 350 0021 0021 .0020 .0020 +.0021 +.0021 0021 0042 0021 0042 .0040 .0050 | 180 | 0017 | 0017 | .0016 | .0016 | +.0017 | +.0017 | 0017 | 0034 | 0017 | 0034 | .0032 | .0042 | | 220 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 350 0021 0021 .0020 .0020 +.0021 +.0021 0021 0042 0021 0042 .0040 .0050 | 200 | 0019 | 0019 | .0018 | .0018 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0046 | | 250 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 350 0021 0021 .0020 .0020 +.0021 +.0021 0021 0042 0021 0042 .0040 .0050 | 210 | 0019 | 0019 | .0018 | .0018 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0046 | | 300 0019 0019 .0018 .0018 +.0019 +.0019 0019 0038 0019 0038 .0036 .0046 350 0021 0021 .0020 .0020 +.0021 +.0021 0021 0042 0021 0042 .0040 .0050 | 220 | 0019 | 0019 | .0018 | .0018 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0046 | | 350 00210021 .0020 .0020 +.0021 +.00210021004200210042 .0040 .0050 | 250 | 0019 | 0019 | .0018 | .0018 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0046 | | | 300 | 0019 | 0019 | .0018 | .0018 | +.0019 | +.0019 | 0019 | 0038 | 0019 | 0038 | .0036 | .0046 | | 400 00210021 .0020 .0020 +.0021 +.00210021004200210042 .0040 .0050 | 350 | 0021 | 0021 | .0020 | .0020 | +.0021 | +.0021 | 0021 | 0042 | 0021 | 0042 | .0040 | .0050 | | | 400 | 0021 | 0021 | .0020 | .0020 | +.0021 | +.0021 | 0021 | 0042 | 0021 | 0042 | .0040 | .0050 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. $Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. \ Recommended shaft and a shaft and bearing diameters are for steel supports with standard bearing diameteral clearance. \ Recommended shaft and bearing diameters are for steel supports with standard bearing diameteral clearance. \ Recommended shaft and bearing diameters are for steel supports with standard bearing diameters are for steel supports with standard bearing diameters. \ Recommended shaft and bearing diameters are for steel supports with standard bearing diameters are for steel supports with standard bearing diameters. \ Recommended shaft and s$ housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. All dimensions in inches. Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 | Bearing Diameters Point | | Type C, X, and A with Endurakote Plating – Precision Class 3 | | | | | | | | | | | | |---|---------|--|-----------------|-------|-------|---------------------|--------------|------|------|------|------|----------------|------------| | Nominal Housing Bore Nominal Housing | Bearing | | | | | | | | | | | | | | 015 -0005 -0005 .0004 .0004 +.0005 +.0005 0010 0005 0010 .0008 .0012 017 0006 0006 .0004 .0005 +.0006 +.0006 0012 0006 0012 .0008 .0018 020 0006 0006 .0004 .0005 +.0006 +.0006 0012 0006 0012 .0008 .0018 025 0006 0006 .0004 .0005 +.0006 +.0006 0012 0006 0012 .0008 .0018 030 0006 0006 .0004 .0006 +.0006 +.0006 0012 0006 0012 .0008 .0012 .0008 .0012 .0008 .0012 .0008 .0012 .0008 .0010 .0020 .0008 .0007 0006 0012 .0001 .0020 .0010 .0020 .0010 .0022 .0010 .0022 .0020 .0022 .0022 | (Inch | Bore
Nominal | O.D.
Nominal | | | Diameter
Nominal | Bore Nominal | | | | | "C" on
Befo | ıly)
re | | 017 0006 0006 .0004 .0005 +.0006 +.0006 0012 0006 0012 .0008 .0012 .0008 .0012 .0008 .0012 .0008 .0012 .0006 0012 .0008 .0018 .0018 .0018 .0012 0006 0012 .0008 .0018 .0018 .0018 .0006 0006 0012 .0006 0012 .0008 .0018 .0018 .0018 .0008 .0018 .0008 .0018 .0008 .0018 .0008 .0018 .0008 .0018 .0008 .0012 .0006 0012 .0006 0012 .0006 0012 .0006 0012 .0006 0012 .0010 .0020 .0000 .0006 .0007 0006 0007 0014 0006 0012 .0010 .0010 .0020 .0010 .0000 .0010 .0020 .0000 .0000 .0000 0007 0007 0014 00007 0014 | 010 | 0004 | 0005 | .0003 | .0004 | +.0004 | +.0005 | 0004 | 0008 | 0005 | 0010 | .0007 | .0011 | | 020 -,0006 -,0006 ,0004 ,0005 +,0006 +,0006 -,0012 -,0006 -,0012 ,0008 ,0018 025 -,0006 -,0006 ,0004 ,0005 +,0006 +,0006 -,0006 -,0012 ,0006 -,0012 ,0008 ,0018 030 -,0006 -,0006 ,0006 ,0006 +,0006 +,0006 -,0012 -,0006 -,0012 ,0008 ,0018 035 -,0007 -,0006 ,0005 ,0006 +,0007 +,0006 -,0007 -,0014 -,0006 -,0012 ,0010 ,0020 042 -,0007 -,0007 ,0005 ,0008 +,0007 +,0007 -,0014 -,0007 -,0014 ,0010 ,0020 045 -,0007 -,0007 ,0005 ,0008 +,0007 +,0007 -,0014 -,0007 -,0014 ,0010 ,0022 050 -,0008 -,0007 ,0006 ,0008 +,0008 +,0007 -,0008 | 015 | 0005 | 0005 | .0004 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0008 | .0012 | | 025 -0006 -0006 .0004 0005 +,0006 +,0006 -,0006 -,0012 .0008 .0018 030 -,0006 -,0006 .0004 .0006 +,0006 +,0006 -,0006 -,0012 .0008 .0018 035 -,0007 -,0006 .0005 .0006 +,0007 +,0006 -,0014 -,0006 -,0012 .0010 .0020 040 -,0007 -,0006 .0005 .0006 +,0007 +,0006 -,0007 -,0014 -,0006 -,0012 .0010 .0020 042 -,0007 -,0007 .0005 .0008 +,0007 +,0007 -,0014 -,0007 -,0014 .0010 .0020 045 -,0007 -,0007 .0006 .0008 +,0007 +,0007 -,00014 -,0007 -,0014 .0010 .0022 050 -,0008 -,0007 .0006 .0008 +,0008 +,0007 -,0008 -,0014 .0012 .0022 | 017 | 0006 | 0006 | .0004 | .0005 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0018 | | 030 -0006 -0006 .0004 .0006 +.0006 +.0006 0012 0006 0012 .0008 .0018 035 0007 0006 .0005 .0006 +.0007 +.0006 0007 0014 0006 0012 .0010 .0020 040 0007 0006 .0005 .0006 +.0007 +.0006 0007 0014 0006 0012 .0010 .0020 042 0007 0007 .0005 .0008 +.0007 +.0007 0007 0014 0007 0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0010 .0014 .0012 .0022 .005 .0008 .0008 .0010 | 020 | 0006 | 0006 | .0004 | .0005 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0018 | | 035 -,0007 -,0006 .0005 .0006 +,0007 +,0006 -,0007 -,0014 -,0006 -,0012 .0010 .0020 040 -,0007 -,0006 .0005 .0006 +,0007 +,0006 -,0007 -,0014 -,0007 -,0014 .0010 .0020 042 -,0007 -,0007 .0005 .0008 +,0007 +,0007 -,0014 -,0007 -,0014 .0010 .0020 045 -,0007 -,0008 -,0008 +,0007 +,0007 -,0008 -,0007 -,0014 .0010 .0022 050 -,0008 -,0007 ,0006 .0008 +,0008 +,0008 -,0016 -,0007 -,0014 .0012 .0022 050 -,0008 -,0008 .,0006 .,0008 +,0008 +,0008 -,0016 -,0007 -,0014 ,0012 .0022 055 -,0008 -,0008 .,0006 .,0009 +,0008 +,0008 -,0016 -,0008 | 025 | 0006 | 0006 | .0004 | .0005 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0018 | | 040 0007 0006 .0005 .0006 +.0007 +.0006 0014 0006 0012 .0010 .0020 042 0007 0007 .0005 .0008 +.0007 +.0007 0014 0007 0014 .0010 .0020 045 0007 0008 0007 .0006 .0008 +.0007 +.0008 0014 0007 0014 .0010 .0020 047 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 050 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 055 0008 0008 .0006 .0009 +.0008
+.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0006 .0009 +.0008 +.0008 | 030 | 0006 | 0006 | .0004 | .0006 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0018 | | 042 0007 0007 .0005 .0008 +.0007 +.0007 0007 0014 0007 0014 .0010 .0020 045 0007 0007 .0005 .0008 +.0007 +.0007 0007 0014 0007 0014 .0010 .0020 047 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 050 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 055 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 060 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0016 .0018 .0014 | 035 | 0007 | 0006 | .0005 | .0006 | +.0007 | +.0006 | 0007 | 0014 | 0006 | 0012 | .0010 | .0020 | | 045 -,0007 -,0007 ,0005 ,0008 +,0007 +,0007 -,0014 -,0007 -,0014 ,0010 ,0020 047 -,0008 -,0007 ,0006 ,0008 +,0008 +,0007 -,0008 -,0016 -,0007 -,0014 ,0012 ,0022 050 -,0008 -,0007 ,0006 ,0008 +,0008 +,0008 -,0016 -,0007 -,0014 ,0012 ,0022 055 -,0008 -,0008 ,0006 ,0009 +,0008 +,0008 -,0016 -,0008 -,0016 ,0012 ,0022 060 -,0008 -,0008 ,0006 ,0009 +,0008 +,0008 -,0016 -,0008 -,0016 ,0012 ,0022 065 -,0008 -,0008 ,0006 ,0009 +,0008 +,0008 -,0016 -,0008 -,0016 ,0012 ,0012 ,0022 070 -,0008 -,0009 ,0008 ,0010 +,0008 +,0009 -,0018 | 040 | 0007 | 0006 | .0005 | .0006 | +.0007 | +.0006 | 0007 | 0014 | 0006 | 0012 | .0010 | .0020 | | 047 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 050 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 055 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 060 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 070 0008 0009 .0006 .0010 +.0008 +.0009 0018 0009 0018 .0014 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0018 | 042 | 0007 | 0007 | .0005 | .0008 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0020 | | 050 0008 0007 .0006 .0008 +.0008 +.0007 0008 0016 0007 0014 .0012 .0022 055 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 060 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 070 0008 0009 .0006 .0010 +.0008 +.0009 0008 0016 0008 0016 .0012 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0018 | 045 | 0007 | 0007 | .0005 | .0008 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0020 | | 055 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 060 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 070 0008 0009 .0006 .0010 +.0008 +.0009 0008 0016 0009 0018 .0014 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0010 +.0010 0010 0018 | 047 | 0008 | 0007 | .0006 | .0008 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0022 | | 060 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 065 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 070 0008 0009 .0006 .0010 +.0008 +.0009 0008 0016 0009 0018 .0014 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 100 0010 0010 .0012 +.0010 +.0010 | 050 | 0008 | 0007 | .0006 | .0008 | +.0008 | +.0007 | 0008 | 0016 | 0007 | 0014 | .0012 | .0022 | | 065 0008 0008 .0006 .0009 +.0008 +.0008 0016 0008 0016 .0012 .0022 070 0008 0009 .0006 .0010 +.0008 +.0009 0008 0016 0009 0018 .0014 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 100 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 110 0010 0011 .0010 .0014 +.0010 +.0010 0010 0020 | 055 | 0008 | 0008 | .0006 | .0009 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0022 | | 070 0008 0009 .0006 .0010 +.0008 +.0009 0008 0016 0009 0018 .0014 .0024 075 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 100 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 110 0010 0011 .0010 .0012 +.0010 +.0010 0010 0020 0011 0022 .0018 .0028 120 0010 0011 .0012 | 060 | 0008 | 0008 | .0006 | .0009 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0022 | | 075 0009 0009 .0008 .0010 +.0009 +.0009 0018 0009 0018 .0014 .0024 080 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0009 +.0009 0019 0018 0009 0018 .0014 .0024 100 0010 0010 .0010 .0012 +.0010 +.0010 0010 0010 0020 0010 0020 .0016 .0026 110 0010 0011 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0012 .0014 | 065 | 0008 | 0008 | .0006 | .0009 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0022 | | 080 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 090 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 100 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 110 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 | 070 | 0008 | 0009 | .0006 | .0010 | +.0008 | +.0009 | 0008 | 0016 | 0009 | 0018 | .0014 | .0024 | | 090 0009 0009 .0008 .0010 +.0009 +.0009 0009 0018 0009 0018 .0014 .0024 100 0010 0010 .0010 .0010 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 110 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 .0016 +.0011 +.0012 0011 0022 0012 0024 .0020 .0030 | 075 | 0009 | 0009 | .0008 | .0010 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0014 | .0024 | | 100 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 110 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 .0016 +.0011 +.0012 0011 0022 0012 0024 .0020 .0030 | 080 | 0009 | 0009 | .0008 | .0010 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0014 | .0024 | | 110 0010 0010 .0010 .0012 +.0010 +.0010 0010 0020 0010 0020 .0016 .0026 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 .0016 +.0011 +.0012 0011 0022 0012 0024 .0020 .0030 | 090 | 0009 | 0009 | .0008 | .0010 | +.0009 | +.0009 | 0009 | 0018 | 0009 | 0018 | .0014 | .0024 | | 120 0010 0011 .0010 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 .0016 +.0011 +.0012 0011 0022 0012 0024 .0020 .0030 | 100 | 0010 | 0010 | .0010 | .0012 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0016 | .0026 | | 140 0010 0011 .0012 .0014 +.0010 +.0011 0010 0020 0011 0022 .0018 .0028 160 0011 0012 .0014 .0016 +.0011 +.0012 0011 0022 0012 0024 .0020 .0030 | 110 | 0010 | 0010 | .0010 | .0012 | +.0010 | +.0010 | 0010 | 0020 | 0010 | 0020 | .0016 | .0026 | | 160 00110012 .0014 .0016 +.0011 +.00120011002200120024 .0020 .0030 | 120 | 0010 | 0011 | .0010 | .0014 | +.0010 | +.0011 | 0010 | 0020 | 0011 | 0022 | .0018 | .0028 | | | 140 | 0010 | 0011 | .0012 | .0014 | +.0010 | +.0011 | 0010 | 0020 | 0011 | 0022 | .0018 | .0028 | | | 160 | 0011 | 0012 | .0014 | .0016 | +.0011 | +.0012 | 0011 | 0022 | 0012 | 0024 | .0020 | .0030 | | 180 00110012 .0014 .0016 +.0011 +.00120011002200120024 .0020 .0030 | 180 | 0011 | 0012 | .0014 | .0016 | +.0011 | +.0012 | 0011 | 0022 | 0012 | 0024 | .0020 | .0030 | | 200 00120014 .0016 .0018 +.0012 +.00140012002400140028 .0024 .0034 | 200 | 0012 | 0014 | .0016 | .0018 | +.0012 | +.0014 | 0012 | 0024 | 0014 | 0028 | .0024 | .0034 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. All dimensions in inches. Up thru 12" Bearing Bore +.000 -.010 +.000 -.020 Over 12" Bearing Bore | | Type C, X, and A with Endurakote Plating – Precision Class 4 | | | | | | | | | | | | | | |---------------|--|-------------------|--------|----------|-----------|-------|-----------------------|----------------------|----------|----------------------|------|---------|---------------------|---------------| | Bearing | | ring
neters | Ra | dial & A | cial Runo | ut | Rotating
Duplex DF | Shaft or
Mounting | | tationar
uplex DB | | | Bearing D
Cleara | | | Size
(Inch | Bearing
Bore | Bearing
0.D. | Inner | Race | Outer | Race | Shaft
Diameter | Housing
Bore | Shaft Di | | | ig Bore | (Type ".
"C" o | X"and
nly) | | Series) | Nominal
+.0000 | Nominal
+.0000 | Radial
 Axial | Radial | Axial | Nominal
0000 | Nominal
0000 | Nom | inal | Non | ninal | Befo
Install | | | 010 | 0004 | 0004 | .0002 | .0003 | .0002 | .0003 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0005 | .0009 | | 015 | 0004 | 0004 | .0002 | .0003 | .0002 | .0003 | +.0004 | +.0004 | 0004 | 0008 | 0004 | 0008 | .0005 | .0009 | | 017 | 0005 | 0005 | .0002 | .0003 | .0003 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 020 | 0005 | 0005 | .0002 | .0003 | .0003 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 025 | 0005 | 0005 | .0002 | .0003 | .0003 | .0004 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 030 | 0005 | 0005 | .0002 | .0003 | .0004 | .0005 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 035 | 0005 | 0005 | .0003 | .0004 | .0004 | .0005 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 040 | 0005 | 0005 | .0003 | .0004 | .0004 | .0005 | +.0005 | +.0005 | 0005 | 0010 | 0005 | 0010 | .0006 | .0012 | | 042 | 0005 | 0006 | .0003 | .0004 | .0004 | .0005 | +.0005 | +.0006 | 0005 | 0010 | 0006 | 0012 | .0008 | .0014 | | 045 | 0005 | 0006 | .0003 | .0004 | .0004 | .0005 | +.0005 | +.0006 | 0005 | 0010 | 0006 | 0012 | .0008 | .0014 | | 047 | 0006 | 0006 | .0003 | .0004 | .0004 | .0005 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0014 | | 050 | 0006 | 0006 | .0003 | .0004 | .0004 | .0005 | +.0006 | +.0006 | 0006 | 0012 | 0006 | 0012 | .0008 | .0014 | | 055 | 0006 | 0007 | .0003 | .0004 | .0005 | .0006 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0016 | | 060 | 0006 | 0007 | .0003 | .0004 | .0005 | .0006 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0016 | | 065 | 0006 | 0007 | .0003 | .0004 | .0005 | .0006 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0016 | | 070 | 0006 | 0007 | .0003 | .0004 | .0005 | .0006 | +.0006 | +.0007 | 0006 | 0012 | 0007 | 0014 | .0010 | .0016 | | 075 | 0007 | 0007 | .0004 | .0005 | .0005 | .0006 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0016 | | 080 | 0007 | 0007 | .0004 | .0005 | .0005 | .0006 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0016 | | 090 | 0007 | 0007 | .0004 | .0005 | .0005 | .0006 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0016 | | 100 | 0007 | 0007 | .0005 | .0006 | .0006 | .0007 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0016 | | 110 | 0007 | 0007 | .0005 | .0006 | .0006 | .0007 | +.0007 | +.0007 | 0007 | 0014 | 0007 | 0014 | .0010 | .0016 | | 120 | 0007 | 0008 | .0005 | .0006 | .0007 | .0008 | +.0007 | +.0008 | 0007 | 0014 | 0008 | 0016 | .0012 | .0018 | | 140 | 0008 | 0008 | .0005 | .0007 | .0007 | .0008 | +.0008 | +.0008 | 0008 | 0016 | 0008 | 0016 | .0012 | .0018 | | 160 | 0008 | 0009 | .0007 | .0008 | .0008 | .0009 | +.0008 | +.0009 | 0008 | 0016 | 0009 | 0018 | .0014 | .0020 | | 180 | 0008 | 0009 | .0007 | .0008 | .0008 | .0009 | +.0008 | +.0009 | 0008 | 0016 | 0009 | 0018 | .0014 | .0020 | | 200 | 0009 | 0010 | .0008 | .0009 | .0009 | .0010 | +.0009 | +.0010 | 0009 | 0018 | 0010 | 0020 | .0016 | .0022 | | | | | | | | | | | | | | | | | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at Total Width Tolerance—Duplexed Type A Bearings: either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. #### All dimensions in inches. Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 ${\it Race\,Width\,Tolerance-Single\,Type\,C,X,A\,Bearings:}$ +.000 -.005 Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore Visit our website: www.kaydonbearings.com for latest releases, newest features, and downloads of catalogs, white papers, videos, software, and CAD drawings. # Stainless Steel Bearings (Material Code S) # Kaydon stainless steel bearings are used where high precision and corrosion resistance are required. In today's manufacturing environment, bearings are often required: - I to operate in close proximity to corrosive chemicals - to operate with lubricants which do not protect against corrosion - to be ready-to-use, ultra-clean bearings with no preservative on them Because any of these requirements would disqualify the use of standard 52100 steel material, Kaydon addressed these issues by offering Reali-Slim thin section bearings in AISI 440C stainless steel. This steel meets the minimum 58 HRc hardness level and can support the same loading as does 52100 chrome steel. All bearings made of this material also utilize balls made of AISI 440C stainless steel. Stainless Steel Reali-Slim thin section bearings minimize the surface degradation and particulate formation so common in harsh environment applications. #### They are available: - in AISI 440C stainless steel races - with brass or non-metallic separators - with either stainless steel or ceramic balls - in popular sizes - In either radial contact "C," angular contact "A," or fourpoint contact "X" configurations **NOTE**: In addition to the open Reali-Slim bearings on the following pages, **many sealed Reali-Slim bearings are available in stainless steel.** Please refer to pages 29-34 and, when ordering, replace the J in the part number with a W. # Stainless Steel Open Reali-Slim Bearings Type A – ANGULAR CONTACT A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snap-over assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. If preferred, matched sets are available. Kaydon also offers matched spacers for applications requiring extra precision. Kaydon can provide this service direct from the factory. | SAA Series | | | | | | | | | | | | |-------------------|-------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|--------|--------|------------------| | WAVE ON | | Dimer | nsions in l | nches | | | Capaci | ties in Po | unds① | | | | KAYDON | Si | ize | Lar | id Diamet | ters | | Dynamic | | Stat | tic② | Approx.
Wt.in | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | SAA10AG0 | 1.000 | 1.375 | 1.140 | 1.235 | 1.274 | 194 | 590 | 450 | 340 | 970 | .025 | | SAA15AG0 | 1.500 | 1.875 | 1.640 | 1.735 | 1.774 | 238 | 681 | 560 | 480 | 1,380 | .038 | | SAA17AG0 | 1.750 | 2.125 | 1.890 | 1.985 | 2.024 | 251 | 697 | 600 | 530 | 1,520 | .045 | 4 F = .015Bearing corners are normally chamfered | | | | | | SA Ser | ies | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|--------|------------------| | WAVDON | | Dime | nsions in | Inches | | | Capaci | ties in Po | unds① | | | | KAYDON
Bearing | Si | ize | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt.in | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial3 | Thrust | Radial | Thrust | lbs. | | SA020AR0 | 2.000 | 2.500 | 2.186 | 2.314 | 2.369 | 405 | 1,065 | 960 | 790 | 2,280 | .10 | | SA025AR0 | 2.500 | 3.000 | 2.686 | 2.814 | 2.869 | 459 | 1,150 | 1,100 | 960 | 2,780 | .12 | | SA030AR0 | 3.000 | 3.500 | 3.186 | 3.314 | 3.367 | 507 | 1,225 | 1,230 | 1,140 | 3,290 | .14 | | SA035AR0 | 3.500 | 4.000 | 3.686 | 3.814 | 3.867 | 552 | 1,292 | 1,350 | 1,310 | 3,790 | .17 | | SA040AR0 | 4.000 | 4.500 | 4.186 | 4.314 | 4.367 | 595 | 1,353 | 1,470 | 1,490 | 4,300 | .19 | | SA042AR0 | 4.250 | 4.750 | 4.436 | 4.564 | 4.615 | 616 | 1,382 | 1,530 | 1,580 | 4,550 | .20 | | SA045AR0 | 4.500 | 5.000 | 4.686 | 4.814 | 4.865 | 637 | 1,410 | 1,580 | 1,660 | 4,810 | .21 | | SA047AR0 | 4.750 | 5.250 | 4.936 | 5.064 | 5.115 | 657 | 1,437 | 1,640 | 1,750 | 5,060 | .22 | | SA050AR0 | 5.000 | 5.500 | 5.186 | 5.314 | 5.365 | 676 | 1,463 | 1,690 | 1,840 | 5,310 | .23 | | SA055AR0 | 5.500 | 6.000 | 5.686 | 5.814 | 5.863 | 715 | 1,513 | 1,800 | 2,020 | 5,820 | .25 | | SA060AR0 | 6.000 | 6.500 | 6.186 | 6.314 | 6.363 | 752 | 1,561 | 1,900 | 2,190 | 6,320 | .28 | | SA065AR0 | 6.500 | 7.000 | 6.686 | 6.814 | 6.861 | 788 | 1,605 | 2,000 | 2,370 | 6,830 | .30 | | SA070AR0 | 7.000 | 7.500 | 7.186 | 7.314 | 7.361 | 823 | 1,648 | 2,100 | 2,540 | 7,340 | .32 | | SA075AR0 | 7.500 | 8.000 | 7.686 | 7.814 | 7.861 | 857 | 1,689 | 2,190 | 2,720 | 7,840 | .34 | | SA080AR0 | 8.000 | 8.500 | 8.186 | 8.314 | 8.359 | 890 | 1,728 | 2,280 | 2,890 | 8,350 | .36 | | SA090AR0 | 9.000 | 9.500 | 9.186 | 9.314 | 9.357 | 954 | 1,802 | 2,470 | 3,240 | 9,360 | .41 | | SA100AR0 | 10.000 | 10.500 | 10.186 | 10.314 | 10.355 | 1,014 | 1,871 | 2,640 | 3,590 | 10,370 | .45 | | SA110AR0 | 11.000 | 11.500 | 11.186 | 11.314 | 11.353 | 1,072 | 1,936 | 2,810 | 3,940 | 11,380 | .50 | | SA120AR0 | 12.000 | 12.500 | 12.186 | 12.314 | 12.349 | 1,128 | 1,998 | 2,970 | 4,290 | 12,390 | .54 | Circular pocket 4 F = .025Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million
revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ² Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{4 &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type A – Stainless Steel Open Reali-Slim Bearings, ANGULAR CONTACT | | | | | | SB Ser | ies | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|--------|------------------|------------------------------------| | KAVDON | | Dime | nsions in | Inches | | | Capaci | ties in Po | unds① | | | | | KAYDON
Bearing | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt.in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | SB020AR0 | 2.000 | 2.625 | 2.231 | 2.393 | 2.464 | 601 | 1,520 | 1,380 | 1,090 | 3,150 | .15 | | | SB025AR0 | 2.500 | 3.125 | 2.731 | 2.893 | 2.964 | 675 | 1,650 | 1,590 | 1,340 | 3,860 | .19 | | | SB030AR0 | 3.000 | 3.625 | 3.231 | 3.393 | 3.462 | 734 | 1,737 | 1,750 | 1,550 | 4,470 | .22 | Circular pocket | | SB035AR0 | 3.500 | 4.125 | 3.731 | 3.893 | 3.962 | 801 | 1,840 | 1,930 | 1,790 | 5,180 | .27 | separator | | SB040AR0 | 4.000 | 4.625 | 4.231 | 4.393 | 4.460 | 865 | 1,934 | 2,100 | 2,040 | 5,890 | .30 | 5/32" balls | | SB042AR0 | 4.250 | 4.875 | 4.481 | 4.643 | 4.710 | 891 | 1,967 | 2,170 | 2,150 | 6,200 | .31 | .3125- | | SB045AR0 | 4.500 | 5.125 | 4.731 | 4.893 | 4.960 | 917 | 2,000 | 2,240 | 2,250 | 6,500 | .34 | | | SB047AR0 | 4.750 | 5.375 | 4.981 | 5.143 | 5.210 | 951 | 2,051 | 2,340 | 2,390 | 6,910 | .35 | | | SB050AR0 | 5.000 | 5.625 | 5.231 | 5.393 | 5.460 | 976 | 2,081 | 2,410 | 2,500 | 7,210 | .37 | ▲ .3125 | | SB055AR0 | 5.500 | 6.125 | 5.731 | 5.893 | 5.958 | 1,033 | 2,158 | 2,560 | 2,740 | 7,920 | .40 | | | SB060AR0 | 6.000 | 6.625 | 6.231 | 6.393 | 6.458 | 1,088 | 2,230 | 2,710 | 2,990 | 8,630 | .44 | L2 | | SB065AR0 | 6.500 | 7.125 | 6.731 | 6.893 | 6.958 | 1,132 | 2,281 | 2,840 | 3,200 | 9,240 | .47 | L ₁ L ₃ | | SB070AR0 | 7.000 | 7.625 | 7.231 | 7.393 | 7.456 | 1,184 | 2,347 | 2,980 | 3,450 | 9,960 | .50 | | | SB075AR0 | 7.500 | 8.125 | 7.731 | 7.893 | 7.955 | 1,235 | 2,409 | 3,120 | 3,700 | 10,670 | .54 | 4 F = .040
Bearing corners are | | SB080AR0 | 8.000 | 8.625 | 8.231 | 8.393 | 8.453 | 1,284 | 2,469 | 3,260 | 3,940 | 11,380 | .57 | normally chamfered | | SB090AR0 | 9.000 | 9.625 | 9.231 | 9.393 | 9.451 | 1,370 | 2,568 | 3,510 | 4,400 | 12,700 | .64 | , | | SB100AR0 | 10.000 | 10.625 | 10.231 | 10.393 | 10.449 | 1,461 | 2,673 | 3,760 | 4,890 | 14,120 | .71 | | | SB110AR0 | 11.000 | 11.625 | 11.231 | 11.393 | 11.447 | 1,540 | 2,760 | 4,000 | 5,350 | 15,440 | .78 | | | SB120AR0 | 12.000 | 12.625 | 12.231 | 12.393 | 12.445 | 1,623 | 2,853 | 4,240 | 5,840 | 16,860 | .85 | | | SB140AR0 | 14.000 | 14.625 | 14.231 | 14.393 | 14.439 | 1,767 | 3,005 | 4,670 | 6,760 | 19,500 | .98 | | | SB160AR0 | 16.000 | 16.625 | 16.231 | 16.393 | 16.433 | 1,907 | 3,154 | 5,100 | 7,710 | 22,250 | 1.12 | | | SB180AR0 | 18.000 | 18.625 | 18.231 | 18.393 | 18.425 | 2,038 | 3,292 | 5,510 | 8,660 | 24,990 | 1.26 | | | SB200AR0 | 20.000 | 20.625 | 20.231 | 20.393 | 20.416 | 2,162 | 3,421 | 5,900 | 9,610 | 27,730 | 1.40 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. - ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. - 3 ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). - $\textcircled{4}\,$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com #### Type A – Stainless Steel Open Reali-Slim Bearings, ANGULAR CONTACT | SC Series | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------------|------------------|----------------|------------|--------|--------|------------------| | | | Dime | nsions in I | nches | | | Capaci | ties in Po | unds① | | | | KAYDON | Si | ze | Lar | nd Diame | ters | | Dynamic | | Stat | tic② | Approx.
Wt.in | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | SC040AR0 | 4.000 | 4.750 | 4.277 | 4.473 | 4.554 | 1,153 | 2,520 | 2,770 | 2,550 | 7,360 | .44 | | SC042AR0 | 4.250 | 5.000 | 4.527 | 4.723 | 4.804 | 1,194 | 2,580 | 2,880 | 2,710 | 7,820 | .46 | | SC045AR0 | 4.500 | 5.250 | 4.777 | 4.973 | 5.052 | 1,234 | 2,637 | 2,990 | 2,860 | 8,270 | .49 | | SC047AR0 | 4.750 | 5.500 | 5.027 | 5.223 | 5.302 | 1,274 | 2,693 | 3,100 | 3,020 | 8,720 | .51 | | SC050AR0 | 5.000 | 5.750 | 5.277 | 5.473 | 5.552 | 1,313 | 2,746 | 3,200 | 3,180 | 9,170 | .54 | | SC055AR0 | 5.500 | 6.250 | 5.777 | 5.973 | 6.052 | 1,374 | 2,820 | 3,370 | 3,440 | 9,920 | .58 | | SC060AR0 | 6.000 | 6.750 | 6.277 | 6.473 | 6.550 | 1,448 | 2,917 | 3,580 | 3,750 | 10,820 | .64 | | SC065AR0 | 6.500 | 7.250 | 6.777 | 6.973 | 7.050 | 1,519 | 3,009 | 3,770 | 4,060 | 11,720 | .68 | | SC070AR0 | 7.000 | 7.750 | 7.277 | 7.473 | 7.550 | 1,575 | 3,071 | 3,930 | 4,320 | 12,470 | .74 | | SC075AR0 | 7.500 | 8.250 | 7.777 | 7.973 | 8.048 | 1,642 | 3,156 | 4,120 | 4,630 | 13,380 | .78 | | SC080AR0 | 8.000 | 8.750 | 8.277 | 8.473 | 8.548 | 1,708 | 3,236 | 4,300 | 4,950 | 14,280 | .84 | | SC090AR0 | 9.000 | 9.750 | 9.277 | 9.473 | 9.546 | 1,822 | 3,366 | 4,630 | 5,520 | 15,930 | .98 | | SC100AR0 | 10.000 | 10.750 | 10.277 | 10.473 | 10.544 | 1,942 | 3,508 | 4,970 | 6,140 | 17,730 | 1.04 | | SC110AR0 | 11.000 | 11.750 | 11.277 | 11.473 | 11.542 | 2,047 | 3,621 | 5,280 | 6,720 | 19,390 | 1.14 | | SC120AR0 | 12.000 | 12.750 | 12.277 | 12.473 | 12.540 | 2,147 | 3,729 | 5,570 | 7,290 | 21,040 | 1.23 | | SC140AR0 | 14.000 | 14.750 | 14.277 | 14.473 | 14.535 | 2,347 | 3,946 | 6,170 | 8,490 | 24,500 | 1.43 | | SC160AR0 | 16.000 | 16.750 | 16.277 | 16.473 | 16.529 | 2,533 | 4,144 | 6,730 | 9,680 | 27,950 | 1.63 | | SC180AR0 | 18.000 | 18.750 | 18.277 | 18.473 | 18.523 | 2,707 | 4,326 | 7,280 | 10,880 | 31,410 | 1.83 | | SC200AR0 | 20.000 | 20.750 | 20.277 | 20.473 | 20.517 | 2,863 | 4,484 | 7,780 | 12,030 | 34,720 | 2.03 | | SC250AR0 | 25.000 | 25.750 | 25.277 | 25.473 | 25.500 | 3,233 | 4,863 | 9,010 | 14,900 | 43,280 | 2.52 | | Circular pocket
separator
3/16" balls | | | | | | | | | |---|------------------------|--|--|--|--|--|--|--| | .375 F L ₂ L ₁ | - 375
- 375
- 13 | | | | | | | | \P F = .040 Bearing corners are normally chamfered | SD Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|--------|-------------------|--| | KANDON | | Dime | nsions in l | Inches | | | Capaci | ties in Po | unds① | | | | | KAYDON
Bearing | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | SD040AR0 | 4.000 | 5.000 | 4.370 | 4.630 | 4.741 | 1,819 | 3,708 | 4,260 | 3,550 | 10,260 | .80 | | | SD042AR0 | 4.250 | 5.250 | 4.620 | 4.880 | 4.991 | 1,876 | 3,786 | 4,420 | 3,750 | 10,830 | .84 | | | SD045AR0 | 4.500 | 5.500 | 4.870 | 5.130 | 5.241 | 1,931 | 3,861 | 4,570 | 3,950 | 11,400 | .88 | | | SD047AR0 | 4.750 | 5.750 | 5.120 | 5.380 | 5.490 | 1,986 | 3,934 | 4,720 | 4,150 | 11,970 | .93 | | | SD050AR0 | 5.000 | 6.000 | 5.370 | 5.630 | 5.740 | 2,040 | 4,004 | 4,870 | 4,340 | 12,540 | .98 | | | SD055AR0 | 5.500 | 6.500 | 5.870 | 6.130 | 6.238 | 2,145 | 4,138 | 5,160 | 4,740 | 13,680 | 1.06 | | | SD060AR0 | 6.000 | 7.000 | 6.370 | 6.630 | 6.738 | 2,247 | 4,264 | 5,440 | 5,130 | 14,820 | 1.15 | | | SD065AR0 | 6.500 | 7.500 | 6.870 | 7.130 | 7.236 | 2,346 | 4,384 | 5,720 | 5,530 | 15,960 | 1.24 | | | SD070AR0 | 7.000 | 8.000 | 7.370 | 7.630 | 7.736 | 2,442 | 4,499 | 5,990 | 5,920 | 17,100 | 1.33 | | | SD075AR0 | 7.500 | 8.500 | 7.870 | 8.130 | 8.236 | 2,536 | 4,608 | 6,250 | 6,320 | 18,240 | 1.42 | | | SD080AR0 | 8.000 | 9.000 | 8.370 | 8.630 | 8.734 | 2,627 | 4,713 | 6,510 | 6,710 | 19,380 | 1.52 | | | SD090AR0 | 9.000 | 10.000 | 9.370 | 9.630 | 9.732 | 2,803 | 4,911 | 7,010 | 7,500 | 21,660 | 1.69 | | | SD100AR0 | 10.000 | 11.000 | 10.370 | 10.630 | 10.732 | 2,972 | 5,096 | 7,500 | 8,290 | 23,940 | 1.87 | | | SD110AR0 | 11.000 | 12.000 | 11.370 | 11.630 | 11.730 | 3,133 | 5,270 | 7,960 | 9,080 | 26,220 | 2.05 | | | SD120AR0 | 12.000 | 13.000 | 12.370 | 12.630 | 12.728 | 3,288 | 5,434 | 8,420 | 9,870 | 28,500 | 2.23 | | | SD140AR0 | 14.000 | 15.000 | 14.370 | 14.630 | 14.724 | 3,582 | 5,739 | 9,290 | 11,450 | 33,060 | 2.57 | | | SD160AR0 | 16.000 | 17.000 | 16.370 | 16.630 | 16.718 | 3,856 | 6,018 | 10,130 | 13,030 | 37,620 | 2.93 | | | SD180AR0 | 18.000 | 19.000 | 18.370 | 18.630 | 18.712 | 4,113 | 6,276 | 10,930 | 14,610 | 42,180 | 3.29 | | | SD200AR0 | 20.000 | 21.000 | 20.370 | 20.630 | 20.705 | 4,356 | 6,517 | 11,710 | 16,190 | 46,740 | 3.65 | | | SD210AR0 | 21.000 | 22.000 | 21.370 | 21.630 | 21.700 | 4,472 | 6,632 | 12,086 | 16,981 | 49,020 | 3.83 | | | SD250AR0 | 25.000 | 26.000 | 25.370 | 25.630 | 25.688 |
4,908 | 7,060 | 13,540 | 20,140 | 58,140 | 4.54 | | ④ F = .060 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). They are included for comp "F" is the maximum shaft or housing fillet radius the bearing corners will clear. #### Type A – Stainless Steel Open Reali-Slim Bearings, ANGULAR CONTACT | SF Series | | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|---------|-------------------|--|--| | W 11/2 01/ | | Dime | nsions in l | Inches | | | Capaci | ties in Po | unds① | | | | | | KAYDON
Bearing | Si | ize | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | | SF040AR0 | 4.000 | 5.500 | 4.555 | 4.945 | 5.115 | 3,736 | 6,809 | 8,420 | 6,350 | 18,340 | 1.92 | | | | SF042AR0 | 4.250 | 5.750 | 4.805 | 5.195 | 5.365 | 3,805 | 6,891 | 8,630 | 6,600 | 19,050 | 2.04 | | | | SF045AR0 | 4.500 | 6.000 | 5.055 | 5.445 | 5.615 | 3,966 | 7,134 | 9,050 | 7,090 | 20,460 | 2.14 | | | | SF047AR0 | 4.750 | 6.250 | 5.305 | 5.695 | 5.865 | 4,034 | 7,207 | 9,260 | 7,330 | 21,160 | 2.26 | | | | SF050AR0 | 5.000 | 6.500 | 5.555 | 5.945 | 6.115 | 4,101 | 7,279 | 9,460 | 7,570 | 21,870 | 2.37 | | | | SF055AR0 | 5.500 | 7.000 | 6.055 | 6.445 | 6.613 | 4,319 | 7,566 | 10,060 | 8,310 | 23,980 | 2.59 | | | | SF060AR0 | 6.000 | 7.500 | 6.555 | 6.945 | 7.113 | 4,530 | 7,835 | 10,650 | 9,040 | 26,100 | 2.72 | | | | SF065AR0 | 6.500 | 8.000 | 7.055 | 7.445 | 7.613 | 4,734 | 8,088 | 11,220 | 9,770 | 28,220 | 2.94 | | | | SF070AR0 | 7.000 | 8.500 | 7.555 | 7.945 | 8.113 | 4,932 | 8,329 | 11,770 | 10,510 | 30,330 | 3.16 | | | | SF075AR0 | 7.500 | 9.000 | 8.055 | 8.445 | 8.610 | 5,052 | 8,432 | 12,130 | 11,000 | 31,740 | 3.39 | | | | SF080AR0 | 8.000 | 9.500 | 8.555 | 8.945 | 9.110 | 5,242 | 8,655 | 12,670 | 11,730 | 33,860 | 3.61 | | | | SF090AR0 | 9.000 | 10.500 | 9.555 | 9.945 | 10.108 | 5,608 | 9,073 | 13,700 | 13,190 | 38,090 | 3.95 | | | | SF100AR0 | 10.000 | 11.500 | 10.555 | 10.945 | 11.106 | 5,890 | 9,353 | 14,530 | 14,420 | 41,620 | 4.40 | | | | SF110AR0 | 11.000 | 12.500 | 11.555 | 11.945 | 12.106 | 6,227 | 9,720 | 15,500 | 15,880 | 45,850 | 4.75 | | | | SF120AR0 | 12.000 | 13.500 | 12.555 | 12.945 | 13.104 | 6,487 | 9,969 | 16,290 | 17,100 | 49,380 | 5.20 | | | | SF140AR0 | 14.000 | 15.500 | 14.555 | 14.945 | 15.102 | 7,043 | 10,523 | 17,950 | 19,790 | 57,140 | 5.76 | | | | SF160AR0 | 16.000 | 17.500 | 16.555 | 16.945 | 17.098 | 7,563 | 11,030 | 19,540 | 22,480 | 64,890 | 6.78 | | | | SF180AR0 | 18.000 | 19.500 | 18.555 | 18.945 | 19.096 | 8,103 | 11,573 | 21,210 | 25,410 | 73,360 | 7.67 | | | | SF200AR0 | 20.000 | 21.500 | 20.555 | 20.945 | 21.092 | 8,562 | 12,006 | 22,680 | 28,100 | 81,120 | 8.47 | | | | SF250AR0 | 25.000 | 26.500 | 25.555 | 25.945 | 26.085 | 9,585 | 12,954 | 26,100 | 34,700 | 100,200 | 10.50 | | | 4F = .080 Bearing corners are normally chamfered | | | | | | SG Ser | eries | | | | | | | |-------------------|--------|-----------------|----------------|----------|-----------------------|------------------|----------------|------------|--------|---------|-------------------|---| | I/ AVD ON | | Dime | nsions in | Inches | | | Capaci | ties in Po | unds① | | | | | KAYDON
Bearing | Si | ze | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | C'Bore L ₃ | KAYDON
Radial | ISO
Radial③ | Thrust | Radial | Thrust | lbs. | | | SG040AR0 | 4.000 | 6.000 | 4.742 | 5.258 | 5.491 | 6,281 | 10,167 | 13,630 | 9,480 | 27,360 | 3.61 | Circular pocket | | SG042AR0 | 4.250 | 6.250 | 4.992 | 5.508 | 5.741 | 6,438 | 10,384 | 14,090 | 9,950 | 28,730 | 3.83 | separator
1/2" balls | | SG045AR0 | 4.500 | 6.500 | 5.242 | 5.758 | 5.989 | 6,562 | 10,592 | 14,530 | 10,430 | 30,100 | 3.95 | I/Z Dalis | | SG047AR0 | 4.750 | 6.750 | 5.492 | 6.008 | 6.239 | 6,745 | 10,792 | 14,970 | 10,900 | 31,460 | 4.17 | → 1.000 → | | SG050AR0 | 5.000 | 7.000 | 5.742 | 6.258 | 6.489 | 6,897 | 10,985 | 15,400 | 11,370 | 32,830 | 4.42 | F - | | SG055AR0 | 5.500 | 7.500 | 6.242 | 6.758 | 6.989 | 7,192 | 11,352 | 16,240 | 12,320 | 35,570 | 4.73 | | | SG060AR0 | 6.000 | 8.000 | 6.742 | 7.258 | 7.489 | 7,480 | 11,697 | 17,060 | 13,270 | 38,300 | 5.07 | T I | | SG065AR0 | 6.500 | 8.500 | 7.242 | 7.758 | 7.987 | 7,761 | 12,023 | 17,870 | 14,220 | 41,040 | 5.41 | 1.00 | | SG070AR0 | 7.000 | 9.000 | 7.742 | 8.258 | 8.487 | 8,035 | 12,333 | 18,650 | 15,160 | 43,780 | 5.87 | L ₂ | | SG075AR0 | 7.500 | 9.500 | 8.242 | 8.758 | 8.987 | 8,303 | 12,629 | 19,420 | 16,110 | 46,510 | 6.20 | | | SG080AR0 | 8.000 | 10.000 | 8.742 | 9.258 | 9.485 | 8,566 | 12,912 | 20,180 | 17,060 | 49,250 | 6.54 | | | SG090AR0 | 9.000 | 11.000 | 9.742 | 10.258 | 10.485 | 9,073 | 13,446 | 21,640 | 18,960 | 54,720 | 7.22 | | | SG100AR0 | 10.000 | 12.000 | 10.742 | 11.258 | 11.483 | 9,561 | 13,942 | 23,060 | 20,850 | 60,190 | 8.00 | | | SG110AR0 | 11.000 | 13.000 | 11.742 | 12.258 | 12.481 | 10,027 | 14,409 | 24,440 | 22,750 | 65,660 | 8.68 | ④ F = .080 | | SG120AR0 | 12.000 | 14.000 | 12.742 | 13.258 | 13.481 | 10,481 | 14,849 | 25,780 | 24,640 | 71,140 | 9.47 | Bearing corners are
normally chamfered | | SG140AR0 | 14.000 | 16.000 | 14.742 | 15.258 | 15.478 | 11,338 | 15,665 | 28,360 | 28,430 | 82,080 | 10.90 | normany chamileted | | SG160AR0 | 16.000 | 18.000 | 16.742 | 17.258 | 17.474 | 12,142 | 16,411 | 30,830 | 32,220 | 93,020 | 12.40 | | | SG180AR0 | 18.000 | 20.000 | 18.742 | 19.258 | 19.472 | 12,898 | 17,101 | 33,200 | 36,020 | 104,000 | 13.80 | | | SG200AR0 | 20.000 | 22.000 | 20.742 | 21.258 | 21.468 | 13,612 | 17,745 | 35,490 | 39,810 | 114,900 | 15.20 | | | SG220AR0 | 22.000 | 24.000 | 22.742 | 23.258 | 23.468 | 14,290 | 18,351 | 37,712 | 43,598 | 125,856 | 16.63 | | | SG250AR0 | 25.000 | 27.000 | 25.742 | 26,258 | 26.461 | 15.239 | 19,198 | 40.920 | 49,280 | 142,300 | 18.80 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]mathfrak{D} \ \mathsf{Static} \ \mathsf{capacities} \ \mathsf{are} \ \mathsf{non-brinell} \ \mathsf{limits} \ \mathsf{based} \ \mathsf{on} \ \mathsf{rigid} \ \mathsf{support} \ \mathsf{from} \ \mathsf{the} \ \mathsf{shaft} \ \mathsf{and} \ \mathsf{housing}.$ ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Stainless Steel Open Reali-Slim Bearing Selections Type C – RADIAL CONTACT A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction - often used in conjunction with another bearing. | SAA Series | | | | | | | | | | | | | |-------------------|-------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pour | nds① | | | | | | | KAYDON
Bearing | S | ize | Land D | iameters | Dyna | amic | Static2 | Approx.
Wt. in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | SAA10CL0 | 1.000 | 1.375 | 1.140 | 1.235 | 188 | 558 | 290 | .026 | | | | | | SAA15CL0 | 1.500 | 1.875 | 1.640 | 1.735 | 225 | 632 | 400 | .039 | | | | | | SAA17CL0 | 1.750 | 2.125 | 1.890 | 1.985 | 242 | 663 | 460 | .045 | | | | | | SA Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|------------------|----------------|---------|-------------------|--|--|--|--| | | | Dimensior | s in Inches | | Сара | cities in Pour | nds① | | | | | | | KAYDON
Bearing | S | Size | Land D | iameters | Dyna | amic | Static2 | Approx.
Wt. in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | SA020CP0 | 2.000 | 2.500 | 2.186 | 2.314 | 393 | 1,012 | 680 | .10 | | | | | | SA025CP0 | 2.500 | 3.000 | 2.686 | 2.814 | 442 | 1,094 | 830 | .13 | | | | | | SA030CP0 | 3.000 | 3.500 | 3.186 | 3.314 | 487 | 1,166 | 990 | .15 | | | | | | SA035CP0 | 3.500 | 4.000 | 3.686 | 3.814 | 530 | 1,230 | 1,140 | .18 | | | | | | SA040CP0 | 4.000 | 4.500 | 4.186 | 4.314 | 571 | 1,289 | 1,290 | .19 | | | | | | SA042CP0 | 4.250 | 4.750 | 4.436 | 4.564 | 591 | 1,317 | 1,370 | .20 | | | | | | SA045CP0 | 4.500 | 5.000 | 4.686 | 4.814 | 610 | 1,344 | 1,440 | .22 | | | | | | SA047CP0 | 4.750 | 5.250 | 4.936 | 5.064 | 629 | 1,369 | 1,520 | .23 | | | | | | SA050CP0 | 5.000 | 5.500 | 5.186 | 5.314 | 648 | 1,394 | 1,590 | .24 | | | | | | SA055CP0 | 5.500 | 6.000 | 5.686 | 5.814 | 685 | 1,442 | 1,750 | .25 | | | | | | SA060CP0 | 6.000 | 6.500 | 6.186 | 6.314 | 720 | 1,487 | 1,900 | .28 | | | | | | SA065CP0 | 6.500 | 7.000 | 6.686 | 6.814 | 754 | 1,530 | 2,050 | .30 | | | | | | SA070CP0 | 7.000 | 7.500 | 7.186 | 7.314 | 787 | 1,571 | 2,200 | .31 | | | | | | SA075CP0 | 7.500 | 8.000 | 7.686 | 7.814 | 820 | 1,610
 2,350 | .34 | | | | | | SA080CP0 | 8.000 | 8.500 | 8.186 | 8.314 | 851 | 1,647 | 2,500 | .38 | | | | | | SA090CP0 | 9.000 | 9.500 | 9.186 | 9.314 | 912 | 1,718 | 2,810 | .44 | | | | | | SA100CP0 | 10.000 | 10.500 | 10.186 | 10.314 | 969 | 1,784 | 3,110 | .50 | | | | | | SA110CP0 | 11.000 | 11.500 | 11.186 | 11.314 | 1,025 | 1,846 | 3,410 | .52 | | | | | | SA120CP0 | 12.000 | 12.500 | 12.186 | 12.314 | 1,078 | 1,904 | 3,720 | .56 | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). [&]quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. #### Type C – Stainless Steel Open Reali-Slim Bearings, RADIAL CONTACT | | SB Series | | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | | KAYDON
Bearing | S | iize | Land D | iameters | Dyn | amic | Static2 | Approx.
Wt. in | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | | SB020CP0 | 2.000 | 2.625 | 2.231 | 2.393 | 577 | 1,431 | 930 | .16 | | | | | | | SB025CP0 | 2.500 | 3.125 | 2.731 | 2.893 | 644 | 1,549 | 1,140 | .20 | | | | | | | SB030CP0 | 3.000 | 3.625 | 3.231 | 3.393 | 707 | 1,651 | 1,340 | .24 | | | | | | | SB035CP0 | 3.500 | 4.125 | 3.731 | 3.893 | 767 | 1,743 | 1,540 | .27 | | | | | | | SB040CP0 | 4.000 | 4.625 | 4.231 | 4.393 | 825 | 1,827 | 1,750 | .30 | | | | | | | SB042CP0 | 4.250 | 4.875 | 4.481 | 4.643 | 846 | 1,853 | 1,830 | .31 | | | | | | | SB045CP0 | 4.500 | 5.125 | 4.731 | 4.893 | 880 | 1,904 | 1,950 | .33 | | | | | | | SB047CP0 | 4.750 | 5.375 | 4.981 | 5.143 | 901 | 1,928 | 2,030 | .34 | | | | | | | SB050CP0 | 5.000 | 5.625 | 5.231 | 5.393 | 933 | 1,976 | 2,150 | .38 | | | | | | | SB055CP0 | 5.500 | 6.125 | 5.731 | 5.893 | 984 | 2,044 | 2,360 | .41 | | | | | | | SB060CP0 | 6.000 | 6.625 | 6.231 | 6.393 | 1,034 | 2,108 | 2,560 | .44 | | | | | | | SB065CP0 | 6.500 | 7.125 | 6.731 | 6.893 | 1,082 | 2,168 | 2,760 | .47 | | | | | | | SB070CP0 | 7.000 | 7.625 | 7.231 | 7.393 | 1,129 | 2,226 | 2,970 | .50 | | | | | | | SB075CP0 | 7.500 | 8.125 | 7.731 | 7.893 | 1,175 | 2,281 | 3,170 | .53 | | | | | | | SB080CP0 | 8.000 | 8.625 | 8.231 | 8.393 | 1,219 | 2,334 | 3,370 | .57 | | | | | | | SB090CP0 | 9.000 | 9.625 | 9.231 | 9.393 | 1,304 | 2,434 | 3,780 | .66 | | | | | | | SB100CP0 | 10.000 | 10.625 | 10.231 | 10.393 | 1,386 | 2,527 | 4,190 | .73 | | | | | | | SB110CP0 | 11.000 | 11.625 | 11.231 | 11.393 | 1,464 | 2,615 | 4,590 | .75 | | | | | | | SB120CP0 | 12.000 | 12.625 | 12.231 | 12.393 | 1,539 | 2,698 | 5,000 | .83 | | | | | | | SB140CP0 | 14.000 | 14.625 | 14.231 | 14.393 | 1,680 | 2,851 | 5,810 | 1.05 | | | | | | | SB160CP0 | 16.000 | 16.625 | 16.231 | 16.393 | 1,812 | 2,991 | 6,620 | 1.20 | | | | | | | SB180CP0 | 18.000 | 18.625 | 18.231 | 18.393 | 1,936 | 3,121 | 7,440 | 1.35 | | | | | | | SB200CP0 | 20.000 | 20.625 | 20.231 | 20.393 | 2,053 | 3,242 | 8,250 | 1.50 | | | | | | # **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]textcircled{2} \textit{ Static capacities are non-brinell limits based on rigid support from the shaft and housing. }$ ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type C - Stainless Steel Open Reali-Slim Bearings, RADIAL CONTACT | | SC Series | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|------------------|------------------|----------------|---------|----------------|--|--|--|--| | | | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | KAYDON | S | ize | Land Di | iameters | Dyn | amic | Static2 | Approx. | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | \mathbf{L}_{2} | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
lbs. | | | | | | SC040CP0 | 4.000 | 4.750 | 4.277 | 4.473 | 1,073 | 2,321 | 2,100 | .45 | | | | | | SC042CP0 | 4.250 | 5.000 | 4.527 | 4.723 | 1,108 | 2,370 | 2,220 | .47 | | | | | | SC045CP0 | 4.500 | 5.250 | 4.777 | 4.973 | 1,143 | 2,418 | 2,340 | .48 | | | | | | SC047CP0 | 4.750 | 5.500 | 5.027 | 5.223 | 1,176 | 2,464 | 2,460 | .50 | | | | | | SC050CP0 | 5.000 | 5.750 | 5.277 | 5.473 | 1,209 | 2,509 | 2,590 | .58 | | | | | | SC055CP0 | 5.500 | 6.250 | 5.777 | 5.973 | 1,274 | 2,594 | 2,830 | .59 | | | | | | SC060CP0 | 6.000 | 6.750 | 6.277 | 6.473 | 1,337 | 2,674 | 3,070 | .63 | | | | | | SC065CP0 | 6.500 | 7.250 | 6.777 | 6.973 | 1,397 | 2,751 | 3,310 | .68 | | | | | | SC070CP0 | 7.000 | 7.750 | 7.277 | 7.473 | 1,457 | 2,823 | 3,550 | .73 | | | | | | SC075CP0 | 7.500 | 8.250 | 7.777 | 7.973 | 1,514 | 2,893 | 3,790 | .78 | | | | | | SC080CP0 | 8.000 | 8.750 | 8.277 | 8.473 | 1,570 | 2,960 | 4,030 | .84 | | | | | | SC090CP0 | 9.000 | 9.750 | 9.277 | 9.473 | 1,678 | 3,085 | 4,510 | .94 | | | | | | SC100CP0 | 10.000 | 10.750 | 10.277 | 10.473 | 1,781 | 3,203 | 4,990 | 1.06 | | | | | | SC110CP0 | 11.000 | 11.750 | 11.277 | 11.473 | 1,879 | 3,313 | 5,470 | 1.16 | | | | | | SC120CP0 | 12.000 | 12.750 | 12.277 | 12.473 | 1,974 | 3,417 | 5,950 | 1.25 | | | | | | SC140CP0 | 14.000 | 14.750 | 14.277 | 14.473 | 2,154 | 3,611 | 6,910 | 1.52 | | | | | | SC160CP0 | 16.000 | 16.750 | 16.277 | 16.473 | 2,321 | 3,787 | 7,880 | 1.73 | | | | | | SC180CP0 | 18.000 | 18.750 | 18.277 | 18.473 | 2,478 | 3,951 | 8,840 | 1.94 | | | | | | SC200CP0 | 20.000 | 20.750 | 20.277 | 20.473 | 2,626 | 4,104 | 9,800 | 2.16 | | | | | | SC250CP0 | 25.000 | 25.750 | 25.277 | 25.473 | 2,962 | 4,447 | 12,200 | 2.69 | | | | | | Snap-over sep
3/16" ball | | |---|----------| | .375 — F | - | | | .375 | | 4 F = .04
Bearing corne
normally char | ers are | | SD Series | | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------|------------------|----------------|---------|----------------|--|--|--|--| | | | Dimensior | s in Inches | | Capa | cities in Pou | nds① | | | | | | | KAYDON | S | ize | Land D | iameters | Dyn | amic | Static@ | Approx. | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
lbs. | | | | | | SD040CP0 | 4.000 | 5.000 | 4.370 | 4.630 | 1,755 | 3,523 | 3,080 | .78 | | | | | | SD042CP0 | 4.250 | 5.250 | 4.620 | 4.880 | 1,787 | 3,556 | 3,190 | .83 | | | | | | SD045CP0 | 4.500 | 5.500 | 4.870 | 5.130 | 1,861 | 3,671 | 3,420 | .88 | | | | | | SD047CP0 | 4.750 | 5.750 | 5.120 | 5.380 | 1,892 | 3,701 | 3,530 | .94 | | | | | | SD050CP0 | 5.000 | 6.000 | 5.370 | 5.630 | 1,964 | 3,808 | 3,760 | 1.00 | | | | | | SD055CP0 | 5.500 | 6.500 | 5.870 | 6.130 | 2,063 | 3,937 | 4,100 | 1.06 | | | | | | SD060CP0 | 6.000 | 7.000 | 6.370 | 6.630 | 2,160 | 4,059 | 4,450 | 1.16 | | | | | | SD065CP0 | 6.500 | 7.500 | 6.870 | 7.130 | 2,254 | 4,174 | 4,790 | 1.22 | | | | | | SD070CP0 | 7.000 | 8.000 | 7.370 | 7.630 | 2,345 | 4,284 | 5,130 | 1.31 | | | | | | SD075CP0 | 7.500 | 8.500 | 7.870 | 8.130 | 2,434 | 4,388 | 5,470 | 1.41 | | | | | | SD080CP0 | 8.000 | 9.000 | 8.370 | 8.630 | 2,520 | 4,489 | 5,810 | 1.53 | | | | | | SD090CP0 | 9.000 | 10.000 | 9.370 | 9.630 | 2,688 | 4,678 | 6,500 | 1.72 | | | | | | SD100CP0 | 10.000 | 11.000 | 10.370 | 10.630 | 2,847 | 4,855 | 7,180 | 1.88 | | | | | | SD110CP0 | 11.000 | 12.000 | 11.370 | 11.630 | 3,000 | 5,021 | 7,870 | 2.06 | | | | | | SD120CP0 | 12.000 | 13.000 | 12.370 | 12.630 | 3,148 | 5,178 | 8,550 | 2.25 | | | | | | SD140CP0 | 14.000 | 15.000 | 14.370 | 14.630 | 3,427 | 5,469 | 9,920 | 2.73 | | | | | | SD160CP0 | 16.000 | 17.000 | 16.370 | 16.630 | 3,688 | 5,736 | 11,290 | 3.10 | | | | | | SD180CP0 | 18.000 | 19.000 | 18.370 | 18.630 | 3,933 | 5,982 | 12,650 | 3.48 | | | | | | SD200CP0 | 20.000 | 21.000 | 20.370 | 20.630 | 4,164 | 6,212 | 14,020 | 3.85 | | | | | | SD210CP0 | 21.000 | 22.000 | 21.370 | 21.630 | 4,274 | 6,321 | 14,706 | 4.04 | | | | | | SD250CP0 | 25.000 | 26.000 | 25.370 | 25.630 | 4,689 | 6,729 | 17,440 | 4.79 | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. #### Type C – Stainless Steel Open Reali-Slim Bearings, RADIAL CONTACT | | SF Series | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|---------|------------------|----------------|---------|-------------------|--|--|--|--| |
| | Dimension | s in Inches | | Сара | cities in Pou | nds① | | | | | | | KAYDON
Bearing | S | ize | Land Di | ameters | Dyn | amic | Static@ | Approx.
Wt. in | | | | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | | | | SF040CP0 | 4.000 | 5.500 | 4.555 | 4.945 | 3,559 | 6,334 | 5,360 | 1.9 | | | | | | SF042CP0 | 4.250 | 5.750 | 4.805 | 5.195 | 3,655 | 6,472 | 5,640 | 2.0 | | | | | | SF045CP0 | 4.500 | 6.000 | 5.055 | 5.445 | 3,750 | 6,605 | 5,930 | 2.1 | | | | | | SF047CP0 | 4.750 | 6.250 | 5.305 | 5.695 | 3,843 | 6,732 | 6,210 | 2.2 | | | | | | SF050CP0 | 5.000 | 6.500 | 5.555 | 5.945 | 3,936 | 6,855 | 6,490 | 2.3 | | | | | | SF055CP0 | 5.500 | 7.000 | 6.055 | 6.445 | 4,116 | 7,089 | 7,050 | 2.5 | | | | | | SF060CP0 | 6.000 | 7.500 | 6.555 | 6.945 | 4,291 | 7,308 | 7,620 | 2.7 | | | | | | SF065CP0 | 6.500 | 8.000 | 7.055 | 7.445 | 4,461 | 7,516 | 8,180 | 2.9 | | | | | | SF070CP0 | 7.000 | 8.500 | 7.555 | 7.945 | 4,628 | 7,713 | 8,750 | 3.2 | | | | | | SF075CP0 | 7.500 | 9.000 | 8.055 | 8.445 | 4,791 | 7,901 | 9,310 | 3.4 | | | | | | SF080CP0 | 8.000 | 9.500 | 8.555 | 8.945 | 4,949 | 8,081 | 9,880 | 3.5 | | | | | | SF090CP0 | 9.000 | 10.500 | 9.555 | 9.945 | 5,256 | 8,421 | 11,000 | 3.9 | | | | | | SF100CP0 | 10.000 | 11.500 | 10.555 | 10.945 | 5,550 | 8,737 | 12,130 | 4.3 | | | | | | SF110CP0 | 11.000 | 12.500 | 11.555 | 11.945 | 5,833 | 9,033 | 13,260 | 4.8 | | | | | | SF120CP0 | 12.000 | 13.500 | 12.555 | 12.945 | 6,105 | 9,313 | 14,390 | 5.2 | | | | | | SF140CP0 | 14.000 | 15.500 | 14.555 | 14.945 | 6,620 | 9,832 | 16,650 | 6.0 | | | | | | SF160CP0 | 16.000 | 17.500 | 16.555 | 16.945 | 7,104 | 10,306 | 18,900 | 7.1 | | | | | | SF180CP0 | 18.000 | 19.500 | 18.555 | 18.945 | 7,557 | 10,744 | 21,160 | 7.9 | | | | | | SF200CP0 | 20.000 | 21.500 | 20.555 | 20.945 | 7,986 | 11,153 | 23,420 | 8.9 | | | | | | SF250CP0 | 25.000 | 26.500 | 25.555 | 25.945 | 8,963 | 12,074 | 29,060 | 10.9 | | | | | normally chamfered | | | | S | G Series | | | | | | |-------------------|--------|-----------------|----------------|----------|------------------|----------------|---------|-------------------|---| | | | Dimension | s in Inches | | Capa | cities in Pou | nds① | | | | KAYDON
Bearing | S | ize | Land Di | ameters | Dyn | amic | Static@ | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | lbs. | | | SG040CP0 | 4.000 | 6.000 | 4.742 | 5.258 | 6,115 | 9,579 | 8,210 | 3.6 | Snap-over separator 1/2" balls | | SG042CP0 | 4.250 | 6.250 | 4.992 | 5.508 | 6,061 | 9,481 | 8,210 | 3.8 | | | SG045CP0 | 4.500 | 6.500 | 5.242 | 5.758 | 6,227 | 9,797 | 8,760 | 4.0 | ─ 1.000 ─ ► | | SG047CP0 | 4.750 | 6.750 | 5.492 | 6.008 | 6,487 | 10,099 | 9,300 | 4.1 | F — | | SG050CP0 | 5.000 | 7.000 | 5.742 | 6.258 | 6,691 | 10,388 | 9,850 | 4.3 | | | SG055CP0 | 5.500 | 7.500 | 6.242 | 6.758 | 6,850 | 10,563 | 10,400 | 4.7 | | | SG060CP0 | 6.000 | 8.000 | 6.742 | 7.258 | 7,241 | 11,085 | 11,490 | 5.1 | 1.000 | | SG065CP0 | 6.500 | 8.500 | 7.242 | 7.758 | 7,393 | 11,234 | 12,040 | 5.4 | 1.995 | | SG070CP0 | 7.000 | 9.000 | 7.742 | 8.258 | 7,764 | 11,705 | 13,130 | 5.8 | | | SG075CP0 | 7.500 | 9.500 | 8.242 | 8.758 | 7,911 | 11,835 | 13,680 | 6.1 | | | SG080CP0 | 8.000 | 10.000 | 8.742 | 9.258 | 8,265 | 12,266 | 14,770 | 6.5 | L ₁ | | SG090CP0 | 9.000 | 11.000 | 9.742 | 10.258 | 8,743 | 12,782 | 16,420 | 7.2 | | | SG100CP0 | 10.000 | 12.000 | 10.742 | 11.258 | 9,204 | 13,261 | 18,060 | 7.9 | | | SG110CP0 | 11.000 | 13.000 | 11.742 | 12.258 | 9,648 | 13,710 | 19,700 | 8.6 | ⊕ F = .080 | | SG120CP0 | 12.000 | 14.000 | 12.742 | 13.258 | 10,074 | 14,133 | 21,340 | 9.3 | Bearing corners are
normally chamfered | | SG140CP0 | 14.000 | 16.000 | 14.742 | 15.258 | 10,886 | 14,916 | 24,620 | 10.8 | normany charmered | | SG160CP0 | 16.000 | 18.000 | 16.742 | 17.258 | 11,648 | 15,631 | 27,910 | 12.3 | | | SG180CP0 | 18.000 | 20.000 | 18.742 | 19.258 | 12,367 | 16,291 | 31,190 | 13.7 | | | SG200CP0 | 20.000 | 22.000 | 20.742 | 21.258 | 13,044 | 16,907 | 34,470 | 15.8 | | | SG220CP0 | 22.000 | 24.000 | 22.742 | 23.258 | 13,685 | 17,486 | 37,757 | 16.8 | | | SG250CP0 | 25.000 | 27.000 | 25.742 | 26.258 | 14,591 | 18,295 | 42,680 | 19.5 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Stainless Steel Open Reali-Slim Bearing Selections Type X – FOUR-POINT CONTACT A Conrad assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications. | SAA Series | | | | | | | | | | | | | | |-------------------|-------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--| | MANDON | D | imensior | ns in Inch | es | | | Capaci | ties① | | | | | | | KAYDON
Bearing | S | ize | Land Dia | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | SAA10XL0 | 1.000 | 1.375 | 1.140 | 1.235 | 247 | 370 | 110 | 290 | 730 | 170 | .026 | | | | SAA15XL0 | 1.500 | 1.875 | 1.640 | 1.735 | 296 | 460 | 187 | 400 | 1,000 | 340 | .039 | | | | SAA17XL0 | 1.750 | 2.125 | 1.890 | 1.985 | 319 | 500 | 232 | 460 | 1,140 | 440 | .045 | | | | | | | | | SA | Series | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-------------------------|-----------------|-----------------|-------------------|-----------------|------|--|--|--|--|--| | KAVDAN | Di | imensior | ns in Inch | ies | | Capacities _① | | | | | | | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Approx.
Wt. in | | | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | | | | SA020XP0 | 2.000 | 2.500 | 2.186 | 2.314 | 514 | 790 | 434 | 680 | 1,710 | 770 | .10 | | | | | | | SA025XP0 | 2.500 | 3.000 | 2.686 | 2.814 | 583 | 910 | 601 | 830 | 2,090 | 1,150 | .13 | | | | | | | SA027XP0 | 2.750 | 3.250 | 2.936 | 3.064 | 614 | 960 | 690 | 910 | 2,275 | 1,365 | .14 | | | | | | | SA030XP0 | 3.000 | 3.500 | 3.186 | 3.314 | 643 | 1,010 | 785 | 990 | 2,470 | 1,600 | .15 | | | | | | | SA035XP0 | 3.500 | 4.000 | 3.686 | 3.814 | 701 | 1,110 | 986 | 1,140 | 2,850 | 2,130 | .18 | | | | | | | SA040XP0 | 4.000 | 4.500 | 4.186 | 4.314 | 756 | 1,210 | 1,205 | 1,290 | 3,220 | 2,740 | .19 | | | | | | | SA042XP0 | 4.250 | 4.750 | 4.436 | 4.564 | 783 | 1,260 | 1,321 | 1,370 | 3,410 | 3,070 | .20 | | | | | | | SA045XP0 | 4.500 | 5.000 | 4.686 | 4.814 | 809 | 1,310 | 1,441 | 1,440 | 3,600 | 3,420 | .22 | | | | | | | SA047XP0 | 4.750 | 5.250 | 4.936 | 5.064 | 834 | 1,350 | 1,565 | 1,520 | 3,790 | 3,790 | .23 | | | | | | | SA050XP0 | 5.000 | 5.500 | 5.186 | 5.314 | 859 | 1,400 | 1,693 | 1,590 | 3,980 | 4,180 | .24 | | | | | | | SA055XP0 | 5.500 | 6.000 | 5.686 | 5.814 | 908 | 1,480 | 1,959 | 1,750 | 4,360 | 5,020 | .25 | | | | | | | SA060XP0 | 6.000 | 6.500 | 6.186 | 6.314 | 955 | 1,570 | 2,240 | 1,900 | 4,740 | 5,930 | .28 | | | | | | | SA065XP0 | 6.500 | 7.000 | 6.686 | 6.814 | 1,001 | 1,650 | 2,535 | 2,050 | 5,120 | 6,910 | .30 | | | | | | | SA070XP0 | 7.000 | 7.500 | 7.186 | 7.314 | 1,046 | 1,730 | 2,844 | 2,200 | 5,500 | 7,980 | .31 | | | | | | | SA075XP0 | 7.500 | 8.000 | 7.686 | 7.814 | 1,089 | 1,810 | 3,165 | 2,350 | 5,880 | 9,120 | .34 | | | | | | | SA080XP0 | 8.000 | 8.500 | 8.186 | 8.314 | 1,131 | 1,890 | 3,499 | 2,500 | 6,260 | 10,330 | .38 | | | | | | | SA090XP0 | 9.000 | 9.500 | 9.186 | 9.314 | 1,212 | 2,040 | 4,204 | 2,810 | 7,020 | 12,990 | .44 | | | | | | | SA100XP0 | 10.000 | 10.500 | 10.186 | 10.314 | 1,289 | 2,180 | 4,956 | 3,110 | 7,780 | 15,940 | .50 | | | | | | | SA110XP0 | 11.000 | 11.500 | 11.186 | 11.314 | 1,362 | 2,320 | 5,750 | 3,410 | 8,540 | 19,210 | .52 | | | | | | | SA120XP0 | 12.000 | 12.500 | 12.186 | 12.314 | 1,433 | 2,450 | 6,587 | 3,720 | 9,300 | 22,770 | .56 | | | | | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ² Static capacities are non-brinell limits based on rigid support from the shaft and housing. ^{3 &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ## Type X – Stainless Steel Open Reali-Slim Bearings, FOUR-POINT CONTACT | | SB Series | | | | | | | | | | | | | | | | |-------------------|-----------|-----------------|----------------|----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--|--|--|--| | | D | imension | s in Inche | es . | | Capacities ① | | | | | | | | | | | | KAYDON
Bearing | Si | ze | Land Di | ameters | |
Dynamic | | | Static2 | | Approx.
Wt. in | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | | | | SB020XP0 | 2.000 | 2.625 | 2.231 | 2.393 | 758 | 1,130 | 658 | 930 | 2,340 | 1,080 | .16 | | | | | | | SB025XP0 | 2.500 | 3.125 | 2.731 | 2.893 | 848 | 1,290 | 895 | 1,140 | 2,840 | 1,600 | .19 | | | | | | | SB030XP0 | 3.000 | 3.625 | 3.231 | 3.393 | 933 | 1,440 | 1,159 | 1,340 | 3,350 | 2,220 | .24 | | | | | | | SB035XP0 | 3.500 | 4.125 | 3.731 | 3.893 | 1,014 | 1,590 | 1,450 | 1,540 | 3,860 | 2,940 | .27 | | | | | | | SB040XP0 | 4.000 | 4.625 | 4.231 | 4.393 | 1,091 | 1,720 | 1,764 | 1,750 | 4,370 | 3,770 | .30 | | | | | | | SB042XP0 | 4.250 | 4.875 | 4.481 | 4.643 | 1,120 | 1,780 | 1,917 | 1,830 | 4,570 | 4,170 | .31 | | | | | | | SB045XP0 | 4.500 | 5.125 | 4.731 | 4.893 | 1,165 | 1,850 | 2,103 | 1,950 | 4,880 | 4,690 | .33 | | | | | | | SB047XP0 | 4.750 | 5.375 | 4.981 | 5.143 | 1,193 | 1,900 | 2,265 | 2,030 | 5,080 | 5,140 | .34 | | | | | | | SB050XP0 | 5.000 | 5.625 | 5.231 | 5.393 | 1,236 | 1,980 | 2,463 | 2,150 | 5,380 | 5,720 | .38 | | | | | | | SB055XP0 | 5.500 | 6.125 | 5.731 | 5.893 | 1,304 | 2,100 | 2,844 | 2,360 | 5,890 | 6,850 | .41 | | | | | | | SB060XP0 | 6.000 | 6.625 | 6.231 | 6.393 | 1,371 | 2,220 | 3,247 | 2,560 | 6,400 | 8,080 | .44 | | | | | | | SB065XP0 | 6.500 | 7.125 | 6.731 | 6.893 | 1,435 | 2,340 | 3,668 | 2,760 | 6,910 | 9,410 | .47 | | | | | | | SB070XP0 | 7.000 | 7.625 | 7.231 | 7.393 | 1,498 | 2,450 | 4,109 | 2,970 | 7,420 | 10,850 | .50 | | | | | | | SB075XP0 | 7.500 | 8.125 | 7.731 | 7.893 | 1,559 | 2,560 | 4,568 | 3,170 | 7,920 | 12,380 | .53 | | | | | | | SB080XP0 | 8.000 | 8.625 | 8.231 | 8.393 | 1,618 | 2,670 | 5,045 | 3,370 | 8,430 | 14,020 | .57 | | | | | | | SB090XP0 | 9.000 | 9.625 | 9.231 | 9.393 | 1,732 | 2,880 | 6,050 | 3,780 | 9,450 | 17,600 | .66 | | | | | | | SB100XP0 | 10.000 | 10.625 | 10.231 | 10.393 | 1,841 | 3,080 | 7,121 | 4,190 | 10,460 | 21,580 | .73 | | | | | | | SB110XP0 | 11.000 | 11.625 | 11.231 | 11.393 | 1,945 | 3,280 | 8,254 | 4,590 | 11,480 | 25,970 | .75 | | | | | | | SB120XP0 | 12.000 | 12.625 | 12.231 | 12.393 | 2,045 | 3,470 | 9,446 | 5,000 | 12,500 | 30,770 | .83 | | | | | | | SB140XP0 | 14.000 | 14.625 | 14.231 | 14.393 | 2,234 | 3,840 | 11,994 | 5,810 | 14,530 | 41,580 | 1.05 | | | | | | | SB160XP0 | 16.000 | 16.625 | 16.231 | 16.393 | 2,410 | 4,190 | 14,750 | 6,620 | 16,560 | 54,020 | 1.20 | | | | | | | SB180XP0 | 18.000 | 18.625 | 18.231 | 18.393 | 3 2,576 4,520 1 | | 17,694 | 7,440 | 18,590 | 68,090 | 1.35 | | | | | | | SB200XP0 | 20.000 | 20.625 | 20.231 | 20.393 | 2,731 | 4,850 | 20,813 | 8,250 | 20,620 | 83,780 | 1.50 | | | | | | # **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]ensuremath{\mathfrak{D}} \ensuremath{\mathfrak{S}} \ensuremath{\mathsf{Static}} \ensuremath{\mathsf{capacities}} \ensuremath{\mathsf{are}} \ensuremath{\mathsf{non-brinell}} \ensuremath{\mathsf{limits}} \ensuremath{\mathsf{based}} \ensuremath{\mathsf{on}} \ensuremath{\mathsf{rigid}} \ensuremath{\mathsf{support}} \ensuremath{\mathsf{from}} \ensuremath{\mathsf{the}} \ensuremath{\mathsf{shaft}} \ensuremath{\mathsf{and}} \ensuremath{\mathsf{housing}}.$ ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. #### Type X – Stainless Steel Open Reali-Slim Bearings, FOUR-POINT CONTACT | | | | | | SC | Series | | | | | | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------------------|--|--|--|--|--|--| | WAND ON | Di | imensior | ns in Inch | ies | | Capacities | | | | | | | | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | | | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | | | | | SC040XP0 | 4.000 | 4.750 | 4.277 | 4.473 | 1,417 | 2,210 | 2,326 | 2,100 | 5,260 | 4,600 | .45 | | | | | | | | SC042XP0 | 4.250 | 5.000 | 4.527 | 4.723 | 1,464 | 2,290 | 2,541 | 2,220 | 5,560 | 5,140 | .47 | | | | | | | | SC045XP0 | 4.500 | 5.250 | 4.777 | 4.973 | 1,510 | 2,380 | 2,762 | 2,340 | 5,860 | 5,710 | .48 | | | | | | | | SC047XP0 | 4.750 | 5.500 | 5.027 | 5.223 | 1,556 | 2,460 | 2,991 | 2,460 | 6,160 | 6,320 | .50 | | | | | | | | SC050XP0 | 5.000 | 5.750 | 5.277 | 5.473 | 1,600 | 2,540 | 3,226 | 2,590 | 6,460 | 6,950 | .58 | | | | | | | | SC055XP0 | 5.500 | 6.250 | 5.777 | 5.973 | 1,687 | 2,690 | 3,717 | 2,830 | 7,060 | 8,300 | .59 | | | | | | | | SC060XP0 | 6.000 | 6.750 | 6.277 | 6.473 | 1,770 | 2,840 | 4,234 | 3,070 | 7,660 | 9,770 | .63 | | | | | | | | SC065XP0 | 6.500 | 7.250 | 6.777 | 6.973 | 1,851 | 2,990 | 4,775 | 3,310 | 8,270 | 11,370 | .68 | | | | | | | | SC070XP0 | 7.000 | 7.750 | 7.277 | 7.473 | 1,931 | 3,130 | 5,341 | 3,550 | 8,870 | 13,080 | .73 | | | | | | | | SC075XP0 | 7.500 | 8.250 | 7.777 | 7.973 | 2,007 | 3,270 | 5,930 | 3,790 | 9,470 | 14,910 | .78 | | | | | | | | SC080XP0 | 8.000 | 8.750 | 8.277 | 8.473 | 2,082 | 3,410 | 6,542 | 4,030 | 10,070 | 16,870 | .84 | | | | | | | | SC090XP0 | 9.000 | 9.750 | 9.277 | 9.473 | 2,226 | 3,670 | 7,830 | 4,510 | 11,270 | 21,130 | .94 | | | | | | | | SC100XP0 | 10.000 | 10.750 | 10.277 | 10.473 | 2,364 | 3,930 | 9,201 | 4,990 | 12,470 | 25,880 | 1.06 | | | | | | | | SC110XP0 | 11.000 | 11.750 | 11.277 | 11.473 | 2,496 | 4,180 | 10,651 | 5,470 | 13,680 | 31,110 | 1.16 | | | | | | | | SC120XP0 | 12.000 | 12.750 | 12.277 | 12.473 | 2,622 | 4,420 | 12,174 | 5,950 | 14,880 | 36,830 | 1.25 | | | | | | | | SC140XP0 | 14.000 | 14.750 | 14.277 | 14.473 | 2,862 | 4,890 | 15,434 | 6,910 | 17,280 | 49,690 | 1.52 | | | | | | | | SC160XP0 | 16.000 | 16.750 | 16.277 | 16.473 | 3,086 | 5,330 | 18,955 | 7,880 | 19,690 | 64,480 | 1.73 | | | | | | | | SC180XP0 | 18.000 | 18.750 | 18.277 | 18.473 | 3,295 | 5,760 | 22,712 | 8,840 | 22,090 | 81,190 | 1.94 | | | | | | | | SC200XP0 | 20.000 | 20.750 | 20.277 | 20.473 | 3,492 | 6,170 | 26,695 | 9,800 | 24,500 | 99,830 | 2.16 | | | | | | | | SC250XP0 | 25.000 | 25.750 | 25.277 | 25.473 | 3,941 | 7,140 | 37,518 | 12,200 | 30,510 | 154,800 | 2.69 | | | | | | | $\Im F = .040$ Bearing corners are normally chamfered | | | | | | SD | Series | | | | | | | | | | | | |-------------------|--------|--------------|------------|----------------|-----------------|---------------------|-----------------|-----------------|------------------|-----------------|------|--|--|--|--|--|--| | KANDON | Di | mensior | ıs in Inch | ies | | Capacities ① | | | | | | | | | | | | | KAYDON
Bearing | Si | ze | Land Di | ameters | | Dynamic | | | Approx.
Wt.in | | | | | | | | | | Number | Bore | Bore Outside | | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | | | | | | | | SD040XP0 | 4.000 | 5.000 | 4.370 | 4.630 | 2,311 | 3,520 | 3,901 | 3,080 | 7,700 | 6,930 | .78 | | | | | | | | SD042XP0 | 4.250 | 5.250 | 4.620 | 4.880 | 2,355 | 3,600 | 4,196 | 3,190 | 7,980 | 7,580 | .83 | | | | | | | | SD045XP0 | 4.500 | 5.500 | 4.870 | 5.130 | 2,454 | 3,770 | 4,602 | 3,420 | 8,550 | 8,550 | .88 | | | | | | | | SD047XP0 | 4.750 | 5.750 | 5.120 | 5.380 | 2,496 | 3,860 | 4,916 | 3,530 | 8,840 | 9,280 | .94 | | | | | | | | SD050XP0 | 5.000 | 6.000 | 5.370 | 5.630 | 2,592 | 4,020 | 5,348 | 3,760 | 9,410 | 10,350 | 1.00 | | | | | | | | SD055XP0 | 5.500 | 6.500 | 5.870 | 6.130 | 2,725 | 4,260 | 6,134 | 4,100 | 10,260 | 12,310 | 1.06 | | | | | | | | SD060XP0 | 6.000 | 7.000 | 6.370 | 6.630 | 2,855 | 4,490 | 6,961 | | | 14,450 | 1.16 | | | | | | | | SD065XP0 | 6.500 | 7.500 | 6.870 | 7.130 | 2,980 | 4,720 | 7,826 | 4,790 | 11,970 | 16,760 | 1.22 | | | | | | | | SD070XP0 | 7.000 | 8.000 | 7.370 | 7.630 | 3,103 | 4,940 | 8,730 | 5,130 | 12,830 | 19,240 | 1.31 | | | | | | | | SD075XP0 | 7.500 | 8.500 | 7.870 | 8.130 | 3,222 | 5,160 | 9,669 | 5,470 | 13,680 | 21,890 | 1.41 | | | | | | | | SD080XP0 | 8.000 | 9.000 | 8.370 | 8.630 | 3,338 | 5,370 | 10,643 | 5,810 | 14,540 | 24,710 | 1.53 | | | | | | | | SD090XP0 | 9.000 | 10.000 | 9.370 | 9.630 | 3,561 | 5,790 | 12,693 | 6,500 | 16,250 | 30,870 | 1.72 | | | | | | | | SD100XP0 | 10.000 | 11.000 | 10.370 | 10.630 | 3,776 | 6,190 | 14,872 | 7,180 | 17,960 | 37,710 | 1.88 | | | | | | | | SD110XP0 | 11.000 | 12.000 | 11.370 | 11.630 | 3,981 | 6,570 | 17,173 | 7,870 | 19,670 | 45,230 | 2.06 | | | | | | | | SD120XP0 | 12.000 | 13.000 | 12.370 | 12.630 | 4,178 | 6,950 | 19,590 | 8,550 | 21,380 | 53,440 | 2.25 | | | | | | | | SD140XP0 | 14.000 | 15.000 | 14.370 | 14.630 | 4,551 | 7,670 | 24,755 | 9,920 | 24,800 | 71,910 | 2.73 | | | | | | | | SD160XP0 | 16.000 | 17.000 | 16.370 | 16.630 | 4,899 | 8,360 | 30,325 | 11,290 | 28,220 | 93,110 | 3.10 | | | | | | | | SD180XP0 | 18.000 | 19.000 | 18.370 | 18.630 | 5,226 | 9,030 | 36,268 | 12,650 | 31,640 | 117,000 | 3.48 | | | | | | | | SD200XP0 | 20.000 | 21.000 | 20.370 | 20.630 | 5,534 | 9,670 42,561 | | 14,020 35,060 | | 143,700 | 3.85 | | | | | | | | SD210XP0 | 21.000 | 22.000 | 21.370 | 21.630 | 5,682 | 9,980 | 45,826 | 14,710 | 36,770 | 158,100 | 4.04 | | | | | | | 6,235 normally chamfered 17,440 43,610 222,400 4.79 11,180 59,649 **SD250XP0** 25.000 26.000 25.370 25.630 ① Capacities listed are not simultaneous. For combined loading see discussion of
Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $[\]ensuremath{\mathfrak{D}} \ensuremath{\mathsf{Static}} \ensuremath{\mathsf{capacities}} \ensuremath{\mathsf{are}} \ensuremath{\mathsf{non-brinell}} \ensuremath{\mathsf{limits}} \ensuremath{\mathsf{based}} \ensuremath{\mathsf{on}} \ensuremath{\mathsf{rigid}} \ensuremath{\mathsf{support}} \ensuremath{\mathsf{from}} \ensuremath{\mathsf{the}} \ensuremath{\mathsf{shaft}} \ensuremath{\mathsf{and}} \ensuremath{\mathsf{housing}}.$ ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Type X – Stainless Steel Open Reali-Slim Bearings, FOUR-POINT CONTACT | | | | | | SF | Series | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------------------------| | W. 13/25 6.31 | Di | imensior | ns in Inch | 1es | | | Capaci | ities① | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | Snap-over separator
3/8" balls | | SF040XP0 | 4.000 | 5.500 | 4.555 | 4.945 | 4,665 | 6,830 | 8,312 | 5,360 | 13,400 | 12,730 | 1.9 | 1 1 | | SF042XP0 | 4.250 | 5.750 | 4.805 | 5.195 | 4,795 | 7,070 | 8,993 | 5,640 | 14,110 | 14,110 | 2.0 | .750 | | SF045XP0 | 4.500 | 6.000 | 5.055 | 5.445 | 4,923 | 7,300 | 9,695 | 5,930 | 14,810 | 15,550 | 2.1 | F ~ | | SF047XP0 | 4.750 | 6.250 | 5.305 | 5.695 | 5,048 | 7,530 | 10,416 | 6,210 | 15,520 | 17,070 | 2.2 | | | SF050XP0 | 5.000 | 6.500 | 5.555 | 5.945 | 5,172 | 7,760 | 11,157 | 6,490 | 16,220 | 18,660 | 2.3 | | | SF055XP0 | 5.500 | 7.000 | 6.055 | 6.445 | 5,415 | 8,200 | 12,696 | 7,050 | 17,630 | 22,040 | 2.5 | .750 | | SF060XP0 | 6.000 | 7.500 | 6.555 | 6.945 | 5,651 | 8,630 | 14,311 | 7,620 | 19,050 | 25,710 | 2.7 | → | | SF065XP0 | 6.500 | 8.000 | 7.055 | 7.445 | 5,880 | 9,050 | 15,993 | 8,180 | 20,460 | 29,660 | 2.9 | | | SF070XP0 | 7.000 | 8.500 | 7.555 | 7.945 | 6,103 | 9,460 | 17,744 | 8,750 | 21,870 | 33,890 | 3.2 | L ₂ | | SF075XP0 | 7.500 | 9.000 | 8.055 | 8.445 | 6,323 | 9,870 | 19,568 | 9,310 | 23,280 | 38,410 | 3.4 | _ L ₁ | | SF080XP0 | 8.000 | 9.500 | 8.555 | 8.945 | 6,535 | 10,260 | 21,453 | 9,880 | 24,690 | 43,200 | 3.5 | | | SF090XP0 | 9.000 | 10.500 | 9.555 | 9.945 | 6,947 | 11,030 | 25,410 | 11,000 | 27,510 | 53,640 | 3.9 | | | SF100XP0 | 10.000 | 11.500 | 10.555 | 10.945 | 7,342 | 11,770 | 29,608 | 12,130 | 30,330 | 65,210 | 4.3 | ③ F = .080 | | SF110XP0 | 11.000 | 12.500 | 11.555 | 11.945 | 7,721 | 12,490 | 34,032 | 13,260 | 33,150 | 77,910 | 4.8 | Bearing corners are | | SF120XP0 | 12.000 | 13.500 | 12.555 | 12.945 | 8,084 | 13,190 | 38,666 | 14,390 | 35,970 | 91,730 | 5.2 | normally chamfered | | SF140XP0 | 14.000 | 15.500 | 14.555 | 14.945 | 8,775 | 14,530 | 48,556 | 16,650 | 41,620 | 122,800 | 6.0 | | | SF160XP0 | 16.000 | 17.500 | 16.555 | 16.945 | 9,421 | 15,820 | 59,200 | 18,900 | 47,260 | 158,300 | 7.1 | | | SF180XP0 | 18.000 | 19.500 | 18.555 | 18.945 | 10,028 | 17,060 | 70,537 | 21,160 | 52,900 | 198,400 | 7.9 | | | SF200XP0 | 20.000 | 21.500 | 20.555 | 20.945 | 10,602 | 18,250 | 82,528 | 23,420 | 58,550 | 243,000 | 8.9 | | | SF250XP0 | 25.000 | 26.500 | 25.555 | 25.945 | 11,909 | 21,070 | 115,037 | 29,060 | 72,650 | 374,200 | 10.9 | | | | | | | | SG | Series | | | | | | | |-------------------|--------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------------------------| | W 100 0 0 11 | Di | imensior | ns in Inch | 1es | | | Capaci | ities① | | | | | | KAYDON
Bearing | Si | ize | Land Di | ameters | | Dynamic | | | Static2 | | Approx.
Wt. in | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | Radial
(lbs) | Thrust
(lbs) | Moment (in-lbs) | lbs. | Snap-over separator
1/2" balls | | SG040XP0 | 4.000 | 6.000 | 4.742 | 5.258 | 7,979 | 11,260 | 14,966 | 8,210 | 20,520 | 20,520 | 3.6 | | | SG042XP0 | 4.250 | 6.250 | 4.992 | 5.508 | 7,917 | 11,260 | 15,592 | 8,210 | 20,520 | 21,550 | 3.8 | ─ 1.000 ─ | | SG045XP0 | 4.500 | 6.500 | 5.242 | 5.758 | 8,205 | 11,750 | 16,930 | 8,760 | 21,890 | 24,080 | 4.0 | F — | | SG047XP0 | 4.750 | 6.750 | 5.492 | 6.008 | 8,487 | 12,230 | 18,306 | 9,300 | 23,260 | 26,740 | 4.1 | | | SG050XP0 | 5.000 | 7.000 | 5.742 | 6.258 | 8,762 | 12,710 | 19,721 | 9,850 | 24,620 | 29,550 | 4.3 | | | SG055XP0 | 5.500 | 7.500 | 6.242 | 6.758 | 8,979 | 13,180 | 21,896 | 10,400 | 25,990 | 33,790 | 4.7 | | | SG060XP0 | 6.000 | 8.000 | 6.742 | 7.258 | 9,503 | 14,090 | 24,956 | 11,490 | 28,730 | 40,220 | 5.1 | 1.000 | | SG065XP0 | 6.500 | 8.500 | 7.242 | 7.758 | 9,713 | 14,530 | 27,327 | 12,040 | 30,100 | 45,140 | 5.4 | | | SG070XP0 | 7.000 | 9.000 | 7.742 | 8.258 | 10,208 | 15,400 | 30,636 | 13,130 | 32,830 | 52,530 | 5.8 | | | SG075XP0 | 7.500 | 9.500 | 8.242 | 8.758 | 10,410 | 15,820 | 33,196 | 13,680 | 34,200 | 58,140 | 6.1 | | | SG080XP0 | 8.000 | 10.000 | 8.742 | 9.258 | 10,882 | 16,650 | 36,743 | 14,770 | 36,940 | 66,480 | 6.5 | L ₁ | | SG090XP0 | 9.000 | 11.000 | 9.742 | 10.258 | 11,526 | 17,870 | 43,240 | 16,420 | 41,040 | 82,080 | 7.2 | | | SG100XP0 | 10.000 | 12.000 | 10.742 | 11.258 | 12,147 | 19,040 | 50,124 | 18,060 | 45,140 | 99,320 | 7.9 | | | SG110XP0 | 11.000 | 13.000 | 11.742 | 12.258 | 12,739 | 20,180 | 57,347 | 19,700 | 49,250 | 118,200 | 8.6 | ③ F = .080 | | SG120XP0 | 12.000 | 14.000 | 12.742 | 13.258 | 13,315 | 21,280 | 64,935 | 21,340 | 53,350 | 138,700 | 9.3 | Bearing corners are | | SG140XP0 | 14.000 | 16.000 | 14.742 | 15.258 | 14,404 | 23,410 | 81,056 | 24,620 | 61,560 | 184,700 | 10.8 | normally chamfered | | SG160XP0 | 16.000 | 18.000 | 16.742 | 17.258 | 15,425 | 25,450 | 98,373 | 27,910 | 69,770 | 237,200 | 12.3 | | | SG180XP0 | 18.000 | 20.000 | 18.742 | 19.258 | 16,386 | 27,410 | 116,793 | 31,190 | 77,980 | 296,300 | 13.7 | | | SG200XP0 | 20.000 | 22.000 | 20.742 | 21.258 | 17,293 | 29,300 | 136,238 | 34,470 | 86,180 | 362,000 | 15.8 | | | SG220XP0 | 22.000 | 24.000 | 22.742 | 23.258 | 18,152 | 31,130 | 156,625 | 37,760 | 94,390 | 434,200 | 17.3 | | | SG250XP0 | 25.000 | 27.000 | 25.742 | 26.258 | 19,360 | 33,780 | 188,838 | 42,680 | 106,700 | 554,900 | 19.5 | | ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. $^{@ \} Static \ capacities \ are \ non-brinell \ limits \ based \ on \ rigid \ support \ from \ the \ shaft \ and \ housing.$ $[\]ensuremath{\mathfrak{G}}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Reali-Slim MM Metric Series Bearings Kaydon created the thin section bearing standard of the industry in 1954 based on inch sizes. The Reali-Slim inch-standard bearing is still the most widely used thin section bearing in the world. However, for those applications that require metric envelope dimensions or for dimensional interchangeability with other products, Kaydon offers the Reali-Slim MM series of bearings. #### These bearings are offered: - in cross sections of 8, 13, and 20mm - with bore diameters ranging from 20mm to 360mm - with many of the same options found on standard Reali-Slim bearings # The Reali-Slim MM series may also be customized for special applications with options such as: - ceramic balls - special lubes - integral seals Consult Kaydon engineering or your Kaydon representative for details on customization. Download Reali-Design MM software from our website, www.kaydonbearings.com, to obtain specific load/life and other performance data not shown here. ## **Reali-Slim MM Bearings Availability** | | | | | | | | | | | Bor | e Dia | mete | r in Mi | illime | ters | | | | | | | | | |--------------|------|----|----|----|----|----|----|-----|-----|-----|-------|------|---------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----| | Series | Type | 25 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | | | | | | | 180 | 190 | 200 | 250 | 300 | 320 | 340 | 360 | | 8mm | Α | Double | c | Sealed | X | Α | 8mm
Open | c | Х | Α | 13mm
Open | c | Х | Α | 20mm
Open | c | X | # Reali-Slim MM Metric Series Bearing Selections #### How to identify Reali-Slim MM Bearings using our part number code: Standard and optional metric Reali-Slim bearings are marked for complete identification with a 9- or 10-digit part number. Positions 1–9 identify materials, size, type, separator type, and precision. Position 10 (optional) identifies non-standard internal fit, either preload or clearance. Custom and proprietary bearings cannot be identified by code, and are marked only with a 9-digit number. Figure 2-8 | Position | 1 | 2 3 4 | | 5 | 5 6 7 | | 8 | 9 | 10 | | |--------------|----------
-------|-----------|---|-------|--------|------|-----------|-----------|--------------| | Nomenclature | Material | E | Bore (mm) | | | n (mm) | Туре | Separator | Precision | Internal Fit | | Example | K | 0 | 8 | 0 | 0 | 8 | Х | Р | 0 | K | For a complete explanation of position numbers, please refer to Pages 2-3. # Type A – ANGULAR CONTACT A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snap-over assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. If preferred, matched sets are available. Kaydon also offers matched spacers for applications requiring extra precision. Kaydon can provide this service direct from the factory. | 8mm Series | | | | | | | | | | | | | | |-------------------|------|-----------------|----------------|----------------|----------------|------------------|----------------|-------------|--------|--------|-------------------|--|--| | | | Dimensio | ons in Mi | llimeters | | | Capac | ities in Ne | wtons① | | | | | | KAYDON
Bearing | S | ize | La | nd Diame | ters | | Dynamic | | Sta | tic② | Approx.
Weight | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | L ₃ | KAYDON
Radial | ISO
Radial3 | Axial | Radial | Axial | (kg) | | | | K02508AR0 | 25 | 41 | 30.9 | 35.1 | 37.2 | 2667 | 5205 | 5502 | 3648 | 10523 | 0.06 | | | | K05008AR0 | 50 | 66 | 55.9 | 60.1 | 62.2 | 3599 | 6638 | 8032 | 6433 | 18574 | 0.08 | | | | K06008AR0 | 60 | 76 | 65.9 | 70.1 | 72.2 | 4001 | 7176 | 9071 | 7718 | 22291 | 0.09 | | | | K07008AR0 | 70 | 86 | 75.9 | 80.1 | 82.2 | 4315 | 7530 | 9895 | 8787 | 25380 | 0.10 | | | | K08008AR0 | 80 | 96 | 85.9 | 90.1 | 92.2 | 4609 | 7855 | 10689 | 9865 | 28469 | 0.12 | | | | K09008AR0 | 90 | 106 | 95.9 | 100.1 | 102.2 | 4952 | 8263 | 11591 | 11150 | 32185 | 0.13 | | | | K10008AR0 | 100 | 116 | 105.9 | 110.1 | 112.2 | 5227 | 8539 | 12327 | 12219 | 35284 | 0.14 | | | | K11008AR0 | 110 | 126 | 115.9 | 120.1 | 122.2 | 5502 | 8800 | 13033 | 13298 | 38383 | 0.15 | | | | K12008AR0 | 120 | 136 | 125.9 | 130.1 | 132.2 | 5757 | 9048 | 13729 | 14367 | 41472 | 0.16 | | | | K13008AR0 | 130 | 146 | 135.9 | 140.1 | 142.2 | 6061 | 9370 | 14533 | 15651 | 45189 | 0.17 | | | | K14008AR0 | 140 | 156 | 145.9 | 150.1 | 152.2 | 6306 | 9592 | 15191 | 16730 | 48278 | 0.18 | | | | K15008AR0 | 150 | 166 | 155.9 | 160.1 | 162.2 | 6541 | 9805 | 15838 | 17799 | 51377 | 0.20 | | | | K16008AR0 | 160 | 176 | 165.9 | 170.1 | 172.2 | 6825 | 10086 | 16583 | 19084 | 55094 | 0.20 | | | | K17008AR0 | 170 | 186 | 175.9 | 180.1 | 182.1 | 7061 | 10282 | 17201 | 20153 | 58183 | 0.21 | | | | K18008AR0 | 180 | 196 | 185.9 | 190.1 | 192.1 | 7277 | 10472 | 17809 | 21231 | 61282 | 0.22 | | | | K19008AR0 | 190 | 206 | 195.9 | 200.1 | 202.1 | 7541 | 10723 | 18525 | 22516 | 64998 | 0.23 | | | | K20008AR0 | 200 | 216 | 205.9 | 210.1 | 212.1 | 7757 | 10900 | 19103 | 23585 | 68097 | 0.23 | | | | K25008AR0 | 250 | 266 | 255.9 | 260.1 | 262.1 | 8797 | 11772 | 22006 | 29165 | 84190 | 0.28 | | | | K30008AR0 | 300 | 316 | 305.9 | 310.1 | 312.1 | 9797 | 12596 | 24830 | 34951 | 100901 | 0.33 | | | | K32008AR0 | 320 | 336 | 325.9 | 330.1 | 332.1 | 10189 | 12910 | 25939 | 37314 | 107706 | 0.36 | | | | K34008AR0 | 340 | 356 | 345.9 | 350.1 | 352.1 | 10523 | 13164 | 26919 | 39452 | 113894 | 0.38 | | | | K36008AR0 | 360 | 376 | 365.9 | 370.1 | 372.1 | 10885 | 13457 | 27988 | 41816 | 120710 | 0.40 | | | Circular pocket separator 5/32" (inch) balls Angular Contact Type A ④ F = 0.8 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing ³ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). $[\]textcircled{4}\,$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ### Type A - Reali-Slim MM Metric Series Bearing Selections, ANGULAR CONTACT | | | | | 1 | 3mm | Series | | | | | | |-------------------|------|-----------------|----------------|-----------|----------------|------------------|----------------|------------|--------|--------|-------------------| | | | Dimensio | ons in Mi | llimeters | | | Capaci | ties in Ne | wtons① | | | | KAYDON
Bearing | S | ize | Laı | nd Diame | ters | | Dynamic | | Stat | ic② | Approx.
Weight | | Number | Bore | Outside
Dia. | L ₁ | L_2 | L ₃ | KAYDON
Radial | ISO
Radial3 | Axial | Radial | Axial | (kg) | | K02513AR0 | 25 | 51 | 34.7 | 41.3 | 44.7 | 5433 | 9563 | 10542 | 6041 | 17436 | 0.13 | | K05013AR0 | 50 | 76 | 59.7 | 66.3 | 69.6 | 7110 | 12574 | 15171 | 10434 | 30106 | 0.20 | | K06013AR0 | 60 | 86 | 69.7 | 76.3 | 79.6 | 7669 | 13385 | 16730 | 12082 | 34863 | 0.22 | | K07013AR0 | 70 | 96 | 79.7 | 86.3 | 89.6 | 8434 | 14482 | 18691 | 14278 | 41198 | 0.25 | | K08013AR0 | 80 | 106 | 89.7 | 96.3 | 99.6 | 8953 | 15113 | 20104 | 15916 | 45954 | 0.28 | | K09013AR0 | 90 | 116 | 99.7 | 106.3 | 109.6 | 9454 | 15696 | 21477 | 17564 | 50710 | 0.31 | | K10013AR0 | 100 | 126 | 109.7 | 116.3 | 119.6 | 9934 | 16240 | 22791 | 19211 | 55466 | 0.34 | | K11013AR0 | 110 | 136 | 119.7 | 126.3 | 129.6 | 10405 | 16750 | 24075 | 20859 | 60223 | 0.37 | | K12013AR0 | 120 | 146 | 129.7 | 136.3 | 139.6 | 10866 | 17233 | 25331 | 22506 | 64969 | 0.39 | | K13013AR0 | 130 | 156 | 139.7 | 146.3 | 149.6 | 11484 | 17959 | 26949 | 24703 | 71314 | 0.42 | | K14013AR0 | 140 | 166 | 149.7 | 156.3 | 159.5 | 11915 | 18386 | 28135 | 26350 | 76070 | 0.45 | | K15013AR0 | 150 | 176 | 159.7 | 166.3 | 169.5 | 12337 | 18795 | 29292 | 27998 | 80817 | 0.48 | | K16013AR0 | 160 | 186 | 169.7 | 176.3 | 179.5 | 12758 | 19189 | 30440 | 29646 | 85573 | 0.51 | | K17013AR0 | 170 | 196 | 179.7 | 186.3 | 189.5 | 13161 | 19568 | 31548 | 31293 | 90329 | 0.54 | | K18013AR0 | 180 | 206 | 189.7 | 196.3 | 199.5 | 13553 | 19935 | 32646 | 32941 | 95085 | 0.56 | | K19013AR0 | 190 | 216 | 199.7 | 206.3 | 209.5 | 13945 | 20289 | 33725 | 34588 | 99842 | 0.59 | | K20013AR0 | 200 | 226 | 209.7 | 216.3 | 219.4 | 14475 | 20841 | 35137 | 36775 | 106177 | 0.62 | | K25013AR0 | 250 | 276 | 259.7 | 266.3 | 269.4 | 16269 | 22401 | 40207 | 45013 | 129948 | 0.76 | | K30013AR0 | 300 | 326 | 309.7 | 316.3 | 319.3 | 18044 | 23952 | 45287 | 53799 | 155308 | 0.90 | | K32013AR0 | 320 | 346 | 329.7 | 336.3 | 339.3 | 18672 | 24463 | 47111 | 57094 | 164811 | 0.96 | | K34013AR0 | 340 | 366 | 349.7 | 356.3 | 359.2 | 19398 | 25107 | 49200 | 60929 | 175902 | 1.02 | | K36013AR0 | 360 | 386 | 369.7 | 376.3 | 379.2 | 19986 | 25579 | 50955 | 64234 | 185414 | 1.07 | Circular pocket separator 1/4" (inch) balls #### Angular Contact Type A ④ F = 1.5 Bearing corners are normally chamfered | | | | | 2 | 0mm | Series | | | | | | |-------------------|------|-----------------|----------------|-----------|----------------|------------------|----------------|-------------|--------|--------|-------------------| | | | Dimensio | ons in Mi | llimeters | | | Capac | ities in Ne | wtons① | | | | KAYDON
Bearing | S | ize | Laı | nd Diamet | ers | | Dynamic | | Stat | tic@ | Approx.
Weight | | Number | Bore | Outside
Dia. | L ₁ | L_2 | L ₃ | KAYDON
Radial | ISO
Radial3 | Axial | Radial | Axial | (kg) | | K02520AR0 | 25 | 65 | 40.0 | 50.0 | 55 | 11327 | 17632 | 20741 | 11121 | 32087 | 0.31 | | K05020AR0 | 50 | 90 | 65.0 | 75.0 | 80 | 14318 | 23688 | 29155 | 18525 | 53485 | 0.49 | | K06020AR0 | 60 | 100 | 75.0 | 85.0 | 90 | 15171 | 25112 | 31685 | 20996 | 60615 | 0.56 | | K07020AR0 | 70 | 110 | 85.0 | 95.0 | 100 | 16014 | 26377 | 34127 | 23467 | 67744 | 0.62 | | K08020AR0 | 80 | 120 | 95.0 | 105.0 | 110 | 16838 | 27523 | 36481 | 25939 | 74874 | 0.69 | | K09020AR0 | 90 | 130 | 105.0 | 115.0 | 120 | 18152 | 29396 | 39884 | 29646 | 85573 | 0.77 | | K10020AR0 | 100 | 140 | 115.0 | 125.0 | 130 | 18917 | 30333 | 42071 | 32117 | 92702 | 0.84 | | K11020AR0 | 110 | 150 | 125.0 | 135.0 | 140 | 19662 | 31212 | 44199 | 34588 | 99842 | 0.91 | | K12020AR0 | 120 | 160 | 135.0 | 145.0 | 150 | 20398 | 32042 | 46278 | 37050 | 106971 | 0.97 | | K13020AR0 | 130 | 170 | 145.0 | 155.0 | 160 | 21124 | 32831 | 48317 | 39521 | 114100 | 1.04 | | K14020AR0 | 140 | 180 | 155.0 | 165.0 | 170 | 21830 | 33583 | 50308 | 41992 | 121230 | 1.11 | | K15020AR0 | 150 | 190 | 165.0 | 175.0 | 180 | 22938 | 34936 | 53221 | 45699 | 131929 | 1.19 | | K16020AR0 | 160 | 200 | 175.0 | 185.0 | 190 | 23605 | 35607 | 55123 | 48170 | 139058 | 1.26 | | K17020AR0 | 170 | 210 | 185.0 | 195.0 | 200 | 24262 | 36255 | 56986 | 50465 | 146188 | 1.32 | | K18020AR0 | 180 | 220 | 195.0 | 205.0 | 210 | 24909 | 36881 | 58830 | 53113 | 153317 | 1.39 | | K19020AR0 | 190 | 230 | 205.0 | 215.0 | 220 | 25546 | 37488 | 60635 | 55584 | 160447 | 1.46 | | K20020AR0 | 200 | 240 | 215.0 | 225.0 | 230 | 26537 | 38615 | 63302 | 59281 | 171146 | 1.54 | | K25020AR0 | 250 | 290 | 265.0 | 275.0 | 280 | 29822 | 41745 | 72648 | 72873 | 210372 | 1.89 | | K30020AR0 | 300 | 340 | 315.0 | 325.0 | 330 | 32529 | 44076 | 80630 | 85230 | 246029 | 2.23 | | K32020AR0 | 320 | 360 | 335.0 | 345.0 | 350 | 33872 | 45360 | 84484 | 91408 | 263858 | 2.37 | | K34020AR0 | 340 | 380 | 355.0 | 365.0 | 370 | 34872 | 46191 | 87505 | 96341 | 278117 | 2.51 | | K36020AR0 | 360 | 400 | 375.0 | 385.0 | 390 | 36138 | 47377 | 91202 | 102519 | 295945 | 2.66 | Circular pocket separator
3/8" (inch) balls #### Angular Contact Type A \P F = 1.5 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. $[\]begin{tabular}{l} @ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to $\frac{2}{3}$). \\ \end{tabular}$ $[\]textcircled{4}$ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Reali-Slim MM Metric Series Bearing Selections Type C – RADIAL CONTACT A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction – often used in conjunction with another bearing. | 8mm Series | | | | | | | | | | | | | | |-------------------|------|-----------------|----------------|----------------|------------------|----------------|---------|----------------|--|--|--|--|--| | I AVD ON | | Dimensions in | n Millimeter | 'S | Capac | ities in New | tons① | | | | | | | | KAYDON | Si | ize | Land Di | ameters | Dyn | amic | Static2 | Approx. | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
(kg) | | | | | | | K02508CP0 | 25 | 41 | 30.9 | 35.1 | 2501 | 4686 | 2971 | 0.06 | | | | | | | K05008CP0 | 50 | 66 | 55.9 | 60.1 | 3432 | 6200 | 5452 | 0.08 | | | | | | | K06008CP0 | 60 | 76 | 65.9 | 70.1 | 3766 | 6645 | 6433 | 0.09 | | | | | | | K07008CP0 | 70 | 86 | 75.9 | 80.1 | 4089 | 7041 | 7433 | 0.10 | | | | | | | K08008CP0 | 80 | 96 | 85.9 | 90.1 | 4393 | 7399 | 8424 | 0.11 | | | | | | | K09008CP0 | 90 | 106 | 95.9 | 100.1 | 4688 | 7728 | 9405 | 0.13 | | | | | | | K10008CP0 | 100 | 116 | 105.9 | 110.1 | 4972 | 8034 | 10405 | 0.14 | | | | | | | K11008CP0 | 110 | 126 | 115.9 | 120.1 | 5237 | 8319 | 11395 | 0.15 | | | | | | | K12008CP0 | 120 | 136 | 125.9 | 130.1 | 5502 | 8588 | 12376 | 0.16 | | | | | | | K13008CP0 | 130 | 146 | 135.9 | 140.1 | 5766 | 8843 | 13376 | 0.17 | | | | | | | K14008CP0 | 140 | 156 | 145.9 | 150.1 | 6011 | 9085 | 14367 | 0.18 | | | | | | | K15008CP0 | 150 | 166 | 155.9 | 160.1 | 6257 | 9317 | 15347 | 0.20 | | | | | | | K16008CP0 | 160 | 176 | 165.9 | 170.1 | 6492 | 9538 | 16338 | 0.20 | | | | | | | K17008CP0 | 170 | 186 | 175.9 | 180.1 | 6727 | 9751 | 17328 | 0.20 | | | | | | | K18008CP0 | 180 | 196 | 185.9 | 190.1 | 6953 | 9956 | 18319 | 0.21 | | | | | | | K19008CP0 | 190 | 206 | 195.9 | 200.1 | 7110 | 10067 | 19064 | 0.21 | | | | | | | K20008CP0 | 200 | 216 | 205.9 | 210.1 | 7335 | 10261 | 20055 | 0.22 | | | | | | | K25008CP0 | 250 | 266 | 255.9 | 260.1 | 8365 | 11146 | 25007 | 0.28 | | | | | | | K30008CP0 | 300 | 316 | 305.9 | 310.1 | 9307 | 11924 | 29959 | 0.35 | | | | | | | K32008CP0 | 320 | 336 | 325.9 | 330.1 | 9660 | 12211 | 31940 | 0.39 | | | | | | | K34008CP0 | 340 | 356 | 345.9 | 350.1 | 9964 | 12427 | 33921 | 0.42 | | | | | | | K36008CP0 | 360 | 376 | 365.9 | 370.1 | 10297 | 12695 | 35657 | 0.46 | | | | | | Snap-over separator 5/32" (inch) balls # Conrad Assembly Type C ⑤ F = 0.8 Bearing corners are normally chamfered | 8mm Series (Double Sealed) | | | | | | | | | | | | | | | |-----------------------------|-----|--------------------------------------|--|--------|------|---------------------------------------|---------|------------------------------|-------------------------------------|---------------------------|--|--|--|--| | KAYDON
Bearing
Number | | mensions i
ize
Outside
Dia. | n Millimeters
Land Diameters
L ₁ L ₂ | | | ties in New
amic
ISO
Radial③ | static2 | Limiting
Speeds
(RPM*) | Torque
Max. No
Load
(N-m)4 | Approx.
Wt. in
(kg) | | | | | | J02508CP0 | 25 | 41 | 31.55 | 34.42 | 2501 | 4686 | 2971 | 5580 | 0.02 | 0.06 | | | | | | J05008CP0 | 50 | 66 | 56.55 | 59.42 | 3432 | 6200 | 5452 | 3180 | 0.04 | 0.08 | | | | | | J06008CP0 | 60 | 76 | 66.55 | 69.42 | 3766 | 6645 | 6433 | 2710 | 0.05 | 0.09 | | | | | | J07008CP0 | 70 | 86 | 76.55 | 79.42 | 4089 | 7041 | 7433 | 2360 | 0.07 | 0.10 | | | | | | J08008CP0 | 80 | 96 | 86.55 | 89.42 | 4393 | 7399 | 8424 | 2090 | 0.09 | 0.11 | | | | | | J09008CP0 | 90 | 106 | 96.55 | 99.42 | 4688 | 7728 | 9405 | 1880 | 0.12 | 0.13 | | | | | | J10008CP0 | 100 | 116 | 106.55 | 109.42 | 4972 | 8034 | 10405 | 1700 | 0.15 | 0.14 | | | | | | J11008CP0 | 110 | 126 | 116.55 | 119.42 | 5237 | 8319 | 11395 | 1560 | 0.18 | 0.15 | | | | | | J12008CP0 | 120 | 136 | 126.55 | 129.42 | 5502 | 8588 | 12376 | 1440 | 0.22 | 0.16 | | | | | | J13008CP0 | 130 | 146 | 136.55 | 139.42 | 5766 | 8843 | 13376 | 1330 | 0.26 | 0.17 | | | | | | J14008CP0 | 140 | 156 | 146.55 | 149.42 | 6011 | 9085 | 14367 | 1240 | 0.30 | 0.18 | | | | | | J15008CP0 | 150 | 166 | 156.55 | 159.42 | 6257 | 9317 | 15347 | 1160 | 0.35 | 0.20 | | | | | | J16008CP0 | 160 | 176 | 166.55 | 169.42 | 6492 | 9538 | 16338 | 1090 | 0.40 | 0.20 | | | | | | J17008CP0 | 170 | 186 | 176.55 | 179.42 | 6727 | 9751 | 17328 | 1030 | 0.46 | 0.20 | | | | | Snap-over separator 5/32" (inch) balls ## Conrad Assembly Type C \$ F = 0.8 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to Page 95). ① Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. ⑤ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type C - Reali-Slim MM Metric Series Bearing Selections, RADIAL CONTACT | | 13mm Series | | | | | | | | | | | | | |-------------------|-------------|-----------------|----------------|----------------|------------------|----------------|---------|-------------------|--|--|--|--|--| | WAYS AN | | Dimensions in | n Millimeter | 'S | Сарас | ities in New | tons① | | | | | | | | KAYDON | S | ize | Land Di | ameters | Dyn | amic | Static2 | Approx.
Wt. in | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | KAYDON
Radial | ISO
Radial③ | Radial | (kg) | | | | | | | K02513CP0 | 25 | 51 | 34.7 | 41.3 | 5247 | 8660 | 5070 | 0.11 | | | | | | | K05013CP0 | 50 | 76 | 59.7 | 66.3 | 6835 | 11706 | 8875 | 0.18 | | | | | | | K06013CP0 | 60 | 86 | 69.7 | 76.3 | 7600 | 12902 | 10778 | 0.21 | | | | | | | K07013CP0 | 70 | 96 | 79.7 | 86.3 | 8032 | 13476 | 12043 | 0.24 | | | | | | | K08013CP0 | 80 | 106 | 89.7 | 96.3 | 8453 | 13999 | 13317 | 0.26 | | | | | | | K09013CP0 | 90 | 116 | 99.7 | 106.3 | 9130 | 14898 | 15210 | 0.29 | | | | | | | K10013CP0 | 100 | 126 | 109.7 | 116.3 | 9522 | 15328 | 16485 | 0.32 | | | | | | | K11013CP0 | 110 | 136 | 119.7 | 126.3 | 10150 | 16106 | 18387 | 0.35 | | | | | | | K12013CP0 | 120 | 146 | 129.7 | 136.3 | 10523 | 16476 | 19653 | 0.38 | | | | | | | K13013CP0 | 130 | 156 | 139.7 | 146.3 | 10885 | 16829 | 20918 | 0.41 | | | | | | | K14013CP0 | 140 | 166 | 149.7 | 156.3 | 11464 | 17494 | 22820 | 0.44 | | | | | | | K15013CP0 | 150 | 176 | 159.7 | 166.3 | 11807 | 17810 | 24085 | 0.46 | | | | | | | K16013CP0 | 160 | 186 | 169.7 | 176.3 | 12150 | 18116 | 25360 | 0.49 | | | | | | | K17013CP0 | 170 | 196 | 179.7 | 186.3 | 12690 | 18703 | 27262 | 0.52 | | | | | | | K18013CP0 | 180 | 206 | 189.7 | 196.3 | 13013 | 18982 | 28528 | 0.55 | | | | | | | K19013CP0 | 190 | 216 | 199.7 | 206.3 | 13337 | 19254 | 29793 | 0.58 | | | | | | | K20013CP0 | 200 | 226 | 209.7 | 216.3 | 13837 | 19784 | 31695 | 0.61 | | | | | | | K25013CP0 | 250 | 276 | 259.7 | 266.3 | 15671 | 21458 | 39305 | 0.75 | | | | | | | K30013CP0 | 300 | 326 | 309.7 | 316.3 | 17201 | 22721 | 46278 | 0.89 | | | | | | | K32013CP0 | 320 | 346 | 329.7 | 336.3 | 17878 | 23312 | 49445 | 0.95 | | | | | | | K34013CP0 | 340 | 366 | 349.7 | 356.3 | 18525 | 23879 | 52613 | 1.01 | | | | | | | K36013CP0 | 360 | 386 | 369.7 | 376.3 | 19162 | 24424 | 55780 | 1.06 | | | | | | | Snap-over separator | r | |----------------------------|---| | 1/4" (inch) halls | | ## Conrad Assembly Type C ④ F = 1.5 Bearing corners are normally chamfered | | 20mm Series | | | | | | | | | | | | |-------------------|-------------|-----------------|----------------|---------|------------------|----------------|---------|----------------|--|--|--|--| | 1/ 1// D 0 1/ | | Dimensions in | n Millimeter | rs . | Capac | ities in New | tons① | | | | | | | KAYDON | S | ize | Land Di | ameters | Dyn | amic | Static2 | Approx. | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | KAYDON
Radial | ISO
Radial③ | Radial | Wt. in
(kg) | | | | | | K02520CP0 | 25 | 65 | 40.0 | 50.0 | 11552 | 16436 | 9983 | 0.34 | | | | | | K05020CP0 | 50 | 90 | 65.0 | 75.0 | 13827 | 21778 | 15691 | 0.51 | | | | | | K06020CP0 | 60 | 100 | 75.0 | 85.0 | 14239 | 22616 | 17113 | 0.58 | | | | | | K07020CP0 | 70 | 110 | 85.0 | 95.0 | 15426 | 24527 | 19966 | 0.65 | | | | | | K08020CP0 | 80 | 120 | 95.0 | 105.0 | 15857 | 25129 | 21388 | 0.72 | | | | | | K09020CP0 | 90 | 130 | 105.0 | 115.0 | 16966 | 26740 | 24252 | 0.80 | | | | | | K10020CP0 | 100 | 140 | 115.0 | 125.0 | 17387 | 27213 | 25674 | 0.86 | | | | | | K11020CP0 | 110 | 150 | 125.0 | 135.0 | 18437 | 28623 | 28528 |
0.94 | | | | | | K12020CP0 | 120 | 160 | 135.0 | 145.0 | 19437 | 29931 | 31381 | 1.01 | | | | | | K13020CP0 | 130 | 170 | 145.0 | 155.0 | 19839 | 30282 | 32803 | 1.08 | | | | | | K14020CP0 | 140 | 180 | 155.0 | 165.0 | 20800 | 31468 | 35657 | 1.15 | | | | | | K15020CP0 | 150 | 190 | 165.0 | 175.0 | 21192 | 31776 | 37079 | 1.20 | | | | | | K16020CP0 | 160 | 200 | 175.0 | 185.0 | 22104 | 32867 | 39933 | 1.30 | | | | | | K17020CP0 | 170 | 210 | 185.0 | 195.0 | 22487 | 33145 | 42786 | 1.40 | | | | | | K18020CP0 | 180 | 220 | 195.0 | 205.0 | 23369 | 34159 | 44208 | 1.50 | | | | | | K19020CP0 | 190 | 230 | 205.0 | 215.0 | 24222 | 35126 | 47072 | 1.50 | | | | | | K20020CP0 | 200 | 240 | 215.0 | 225.0 | 24585 | 35363 | 48494 | 1.60 | | | | | | K25020CP0 | 250 | 290 | 265.0 | 275.0 | 27665 | 38384 | 59899 | 2.10 | | | | | | K30020CP0 | 300 | 340 | 315.0 | 325.0 | 30508 | 41029 | 71314 | 2.30 | | | | | | K32020CP0 | 320 | 360 | 335.0 | 345.0 | 31509 | 41900 | 75590 | 2.42 | | | | | | K34020CP0 | 340 | 380 | 355.0 | 365.0 | 32480 | 42740 | 79865 | 2.54 | | | | | | K36020CP0 | 360 | 400 | 375.0 | 385.0 | 33421 | 43552 | 84151 | 2.70 | | | | | Snap-over separator 3/8" (inch) balls ## Conrad Assembly Type C ④ F = 1.5 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. $[\]textcircled{3}$ ISO Radial ratings are calculated per ISO 281:1990. They are included for comparison only (refer to <u>Page 95</u>). [&]quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Reali-Slim MM Metric Series Bearing Selections, Type X – FOUR-POINT CONTACT A Conrad assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications. | | 8mm Series | | | | | | | | | | | | | |-------------------|------------|-----------------|----------------|----------------|---------------|---------------|-----------------|---------------|---------------|-----------------|-------------------|--|--| | | D | imension | s in Millim | eters | | | Capaci | ties① | | | | | | | KAYDON
Bearing | S | ize | Land Di | ameters | | Dynamic | | | Static@ | | Approx.
Weight | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(N) | Thrust
(N) | Moment
(N-m) | Radial
(N) | Thrust
(N) | Moment
(N-m) | (kg) | | | | K02508XP0 | 25 | 41 | 30.9 | 35.1 | 3246 | 4599 | 40 | 3275 | 7433 | 49 | 0.06 | | | | K05008XP0 | 50 | 66 | 55.9 | 60.1 | 4511 | 6531 | 98 | 5443 | 13621 | 158 | 0.08 | | | | K06008XP0 | 60 | 76 | 65.9 | 70.1 | 4962 | 7306 | 127 | 6433 | 16093 | 219 | 0.09 | | | | K07008XP0 | 70 | 86 | 75.9 | 80.1 | 5384 | 8032 | 158 | 7424 | 18574 | 290 | 0.10 | | | | K08008XP0 | 80 | 96 | 85.9 | 90.1 | 5796 | 8728 | 191 | 8424 | 21045 | 370 | 0.11 | | | | K09008XP0 | 90 | 106 | 95.9 | 100.1 | 6188 | 9405 | 228 | 9405 | 23526 | 461 | 0.13 | | | | K10008XP0 | 100 | 116 | 105.9 | 110.1 | 6570 | 10052 | 266 | 10395 | 25997 | 562 | 0.14 | | | | K11008XP0 | 110 | 126 | 115.9 | 120.1 | 6933 | 10689 | 307 | 11395 | 28469 | 672 | 0.15 | | | | K12008XP0 | 120 | 136 | 125.9 | 130.1 | 7286 | 11297 | 350 | 12376 | 30950 | 792 | 0.16 | | | | K13008XP0 | 130 | 146 | 135.9 | 140.1 | 7630 | 11886 | 395 | 13366 | 33431 | 923 | 0.18 | | | | K14008XP0 | 140 | 156 | 145.9 | 150.1 | 7963 | 12464 | 442 | 14367 | 35902 | 1063 | 0.19 | | | | K15008XP0 | 150 | 166 | 155.9 | 160.1 | 8296 | 13033 | 492 | 15347 | 38383 | 1213 | 0.20 | | | | K16008XP0 | 160 | 176 | 165.9 | 170.1 | 8610 | 13592 | 543 | 16338 | 40855 | 1373 | 0.20 | | | | K17008XP0 | 170 | 186 | 175.9 | 180.1 | 8924 | 14131 | 596 | 17328 | 43326 | 1543 | 0.20 | | | | K18008XP0 | 180 | 196 | 185.9 | 190.1 | 9228 | 14661 | 651 | 18319 | 45807 | 1722 | 0.21 | | | | K19008XP0 | 190 | 206 | 195.9 | 200.1 | 9444 | 15063 | 701 | 19064 | 47660 | 1888 | 0.21 | | | | K20008XP0 | 200 | 216 | 205.9 | 210.1 | 9728 | 15573 | 759 | 20055 | 50141 | 2086 | 0.22 | | | | K25008XP0 | 250 | 266 | 255.9 | 260.1 | 11111 | 18044 | 1075 | 25007 | 62517 | 3226 | 0.28 | | | | K30008XP0 | 300 | 316 | 305.9 | 310.1 | 12366 | 20359 | 1429 | 29959 | 74903 | 4614 | 0.35 | | | | K32008XP0 | 320 | 336 | 325.9 | 330.1 | 12847 | 21241 | 1580 | 31940 | 79856 | 5238 | 0.39 | | | | K34008XP0 | 340 | 356 | 345.9 | 350.1 | 13239 | 22114 | 1728 | 33921 | 84808 | 5859 | 0.42 | | | | K36008XP0 | 360 | 376 | 365.9 | 370.1 | 13690 | 22849 | 1890 | 35657 | 89133 | 6561 | 0.46 | | | Snap-over separator 5/32" (inch) balls #### 4 Point Contact Type X \P F = 0.8 Bearing corners are normally chamfered | | 8mm Series (Double Sealed) | | | | | | | | | | | | | | |-------------------|----------------------------|-----------------|----------------|----------------|---------------|---------------|-----------------|---------------|---------------------|-----------------|------------------|----------------|----------------|--| | W 11/2 A 11 | Dime | ensions | in Millin | neters | | | Capac | ities① | | | | Torque | | | | KAYDON | Si | ize | Land Dia | ameters | | Dynamic | [| | Static ₂ | | Limiting | Max. No | Approx. | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(N) | Thrust
(N) | Moment
(N-m) | Radial
(N) | Thrust
(N) | Moment
(N-m) | Speeds
(RPM*) | Load
(N-m)③ | Wt. in
(kg) | | | J02508XP0 | 25 | 41 | 31.55 | 34.42 | 3246 | 4599 | 40 | 3275 | 7433 | 49 | 3000 | 0.02 | 0.06 | | | J05008XP0 | 50 | 66 | 56.55 | 59.42 | 4511 | 6531 | 98 | 5443 | 13621 | 158 | 1500 | 0.04 | 0.08 | | | J06008XP0 | 60 | 76 | 66.55 | 69.42 | 4962 | 7306 | 127 | 6433 | 16093 | 219 | 1270 | 0.05 | 0.09 | | | J07008XP0 | 70 | 86 | 76.55 | 79.42 | 5384 | 8032 | 158 | 7424 | 18574 | 290 | 1090 | 0.07 | 0.10 | | | J08008XP0 | 80 | 96 | 86.55 | 89.42 | 5796 | 8728 | 191 | 8424 | 21045 | 370 | 950 | 0.09 | 0.11 | | | J09008XP0 | 90 | 106 | 96.55 | 99.42 | 6188 | 9405 | 228 | 9405 | 23526 | 461 | 700 | 0.12 | 0.13 | | | J10008XP0 | 100 | 116 | 106.55 | 109.42 | 6570 | 10052 | 266 | 10395 | 25997 | 562 | 630 | 0.15 | 0.14 | | | J11008XP0 | 110 | 126 | 116.55 | 119.42 | 6933 | 10689 | 307 | 11395 | 28469 | 672 | 580 | 0.18 | 0.15 | | | J12008XP0 | 120 | 136 | 126.55 | 129.42 | 7286 | 11297 | 350 | 12376 | 30950 | 792 | 530 | 0.22 | 0.16 | | | J13008XP0 | 130 | 146 | 136.55 | 139.42 | 7630 | 11886 | 395 | 13366 | 33431 | 923 | 490 | 0.26 | 0.18 | | | J14008XP0 | 140 | 156 | 146.55 | 149.42 | 7963 | 12464 | 442 | 14367 | 35902 | 1063 | 450 | 0.30 | 0.19 | | | J15008XP0 | 150 | 166 | 156.55 | 159.42 | 8296 | 13033 | 492 | 15347 | 38383 | 1213 | 420 | 0.35 | 0.20 | | | J16008XP0 | 160 | 176 | 166.55 | 169.42 | 8610 | 13592 | 543 | 16338 | 40855 | 1373 | 400 | 0.40 | 0.20 | | | J17008XP0 | 170 | 186 | 176.55 | 179.42 | 8924 | 14131 | 596 | 17328 | 43326 | 1543 | 370 | 0.46 | 0.20 | | Snap-over separator 5/32" (inch) balls #### 4 Point Contact Type X 4) F = 0.8 Bearing corners are normally chamfered ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ⁽⁹⁾ Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. ^{(4) &}quot;F" is the maximum shaft or housing fillet radius the bearing corners will clear. ^{*}Values apply to bearings loaded up to 20% of their dynamic capacity. ### Type X – Reali-Slim MM Metric Series Bearing Selections, FOUR-POINT CONTACT | | 13mm Series | | | | | | | | | | | | | | |-------------------|-------------|-----------------|----------------|----------------|---------------|---------------|-----------------|---------------|---------------|-----------------|----------------|--|--|--| | | D | imension | s in Millim | eters | | | Capaci | ties① | | | | | | | | KAYDON | Si | ize | Land Di | ameters | | Dynamic | , | | Static2 | | Approx. | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(N) | Thrust
(N) | Moment
(N-m) | Radial
(N) | Thrust
(N) | Moment
(N-m) | Weight
(kg) | | | | | K02513XP0 | 25 | 51 | 34.7 | 41.3 | 6757 | 8522 | 96 | 6825 | 12680 | 96 | 0.13 | | | | | K05013XP0 | 50 | 76 | 59.7 | 66.3 | 8924 | 12023 | 211 | 9012 | 22192 | 280 | 0.20 | | | | | K06013XP0 | 60 | 86 | 69.7 | 76.3 | 9944 | 14082 | 272 | 10778 | 26939 | 393 | 0.23 | | | | | K07013XP0 | 70 | 96 | 79.7 | 86.3 | 10532 | 15171 | 328 | 12043 | 30106 | 500 | 0.26 | | | | | K08013XP0 | 80 | 106 | 89.7 | 96.3 | 11111 | 16210 | 388 | 13317 | 33274 | 619 | 0.28 | | | | | K09013XP0 | 90 | 116 | 99.7 | 106.3 | 12003 | 17730 | 464 | 15210 | 38030 | 784 | 0.31 | | | | | K10013XP0 | 100 | 126 | 109.7 | 116.3 | 12543 | 18691 | 532 | 16485 | 41198 | 931 | 0.34 | | | | | K11013XP0 | 110 | 136 | 119.7 | 126.3 | 13376 | 20104 | 617 | 18387 | 45954 | 1131 | 0.37 | | | | | K12013XP0 | 120 | 146 | 129.7 | 136.3 | 13876 | 21025 | 693 | 19672 | 49131 | 1307 | 0.40 | | | | | K13013XP0 | 130 | 156 | 139.7 | 146.3 | 14377 | 21918 | 771 | 20918 | 52299 | 1496 | 0.43 | | | | | K14013XP0 | 140 | 166 | 149.7 | 156.3 | 15141 | 23222 | 869 | 22820 | 57045 | 1746 | 0.46 | | | | | K15013XP0 | 150 | 176 | 159.7 | 166.3 | 15612 | 24075 | 954 | 24085 | 60223 | 1963 | 0.48 | | | |
 K16013XP0 | 160 | 186 | 169.7 | 176.3 | 16073 | 24919 | 1043 | 25360 | 63390 | 2193 | 0.51 | | | | | K17013XP0 | 170 | 196 | 179.7 | 186.3 | 16779 | 26145 | 1152 | 27262 | 68146 | 2494 | 0.54 | | | | | K18013XP0 | 180 | 206 | 189.7 | 196.3 | 17220 | 26949 | 1247 | 28528 | 71314 | 2753 | 0.57 | | | | | K19013XP0 | 190 | 216 | 199.7 | 206.3 | 17652 | 27743 | 1344 | 29793 | 74482 | 3024 | 0.60 | | | | | K20013XP0 | 200 | 226 | 209.7 | 216.3 | 18319 | 28910 | 1464 | 31695 | 79238 | 3375 | 0.63 | | | | | K25013XP0 | 250 | 276 | 259.7 | 266.3 | 20780 | 33372 | 2050 | 39305 | 98253 | 5168 | 0.77 | | | | | K30013XP0 | 300 | 326 | 309.7 | 316.3 | 22820 | 37206 | 2680 | 46278 | 115679 | 7242 | 0.91 | | | | | K32013XP0 | 320 | 346 | 329.7 | 336.3 | 23722 | 38893 | 2963 | 49445 | 123613 | 8232 | 0.97 | | | | | K34013XP0 | 340 | 366 | 349.7 | 356.3 | 24595 | 40531 | 3257 | 52613 | 131527 | 9286 | 1.02 | | | | | K36013XP0 | 360 | 386 | 369.7 | 376.3 | 25438 | 42149 | 3560 | 55780 | 139451 | 10403 | 1.08 | | | | Snap-over separator 1/4" (inch) balls #### 4 Point Contact Type X ③ F = 1.5 Bearing corners are normally chamfered | 20mm Series | | | | | | | | | | | | |-------------------|-------|-----------------|----------------|----------------|---------------|---------------|-----------------|---------------|---------------|-----------------|-------------------| | | D | imension | s in Millime | eters | | | Capaci | ties① | | | _ | | KAYDON
Bearing | S | ize | Land Dia | ameters | | Dynamic | | | Static2 | | Approx.
Weight | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial
(N) | Thrust
(N) | Moment
(N-m) | Radial
(N) | Thrust
(N) | Moment
(N-m) | (kg) | | K02520XP0 | 25 | 65 | 40.0 | 50.0 | 14739 | 17544 | 225 | 14886 | 24958 | 225 | 0.34 | | K05020XP0 | 50 | 90 | 65.0 | 75.0 | 17917 | 23712 | 470 | 18093 | 39217 | 549 | 0.52 | | K06020XP0 | 60 | 100 | 75.0 | 85.0 | 18505 | 25125 | 556 | 18691 | 42786 | 685 | 0.59 | | K07020XP0 | 70 | 110 | 85.0 | 95.0 | 20104 | 27841 | 679 | 20310 | 49916 | 899 | 0.66 | | K08020XP0 | 80 | 120 | 95.0 | 105.0 | 20702 | 29155 | 777 | 21388 | 53485 | 1070 | 0.73 | | K09020XP0 | 90 | 130 | 105.0 | 115.0 | 22192 | 31685 | 916 | 24252 | 60615 | 1334 | 0.80 | | K10020XP0 | 100 | 140 | 115.0 | 125.0 | 22781 | 32921 | 1026 | 25674 | 64185 | 1540 | 0.87 | | K11020XP0 | 110 | 150 | 125.0 | 135.0 | 24183 | 35314 | 1179 | 28528 | 71314 | 1854 | 0.94 | | K12020XP0 | 120 | 160 | 135.0 | 145.0 | 25527 | 37628 | 1341 | 31381 | 78443 | 2196 | 1.01 | | K13020XP0 | 130 | 170 | 145.0 | 155.0 | 26086 | 38766 | 1468 | 32803 | 82013 | 2460 | 1.07 | | K14020XP0 | 140 | 180 | 155.0 | 165.0 | 27370 | 40982 | 1643 | 35657 | 89142 | 2852 | 1.15 | | K15020XP0 | 150 | 190 | 165.0 | 175.0 | 27900 | 42071 | 1779 | 37079 | 92702 | 3152 | 1.22 | | K16020XP0 | 160 | 200 | 175.0 | 185.0 | 29126 | 44199 | 1967 | 39933 | 99832 | 3594 | 1.30 | | K17020XP0 | 170 | 210 | 185.0 | 195.0 | 29646 | 46278 | 2113 | 42786 | 106961 | 3929 | 1.37 | | K18020XP0 | 180 | 220 | 195.0 | 205.0 | 30822 | 47297 | 2312 | 44208 | 110531 | 4421 | 1.44 | | K19020XP0 | 190 | 230 | 205.0 | 215.0 | 31970 | 49318 | 2519 | 47072 | 117670 | 4942 | 1.51 | | K20020XP0 | 200 | 240 | 215.0 | 225.0 | 32450 | 50308 | 2678 | 48494 | 121230 | 5334 | 1.57 | | K25020XP0 | 250 | 290 | 265.0 | 275.0 | 36589 | 57918 | 3706 | 59899 | 149757 | 8087 | 2.10 | | K30020XP0 | 300 | 340 | 315.0 | 325.0 | 40394 | 65048 | 4849 | 71314 | 178275 | 11410 | 2.30 | | K32020XP0 | 320 | 360 | 335.0 | 345.0 | 41727 | 67636 | 5323 | 75590 | 188974 | 12850 | 2.44 | | K34020XP0 | 340 | 380 | 355.0 | 365.0 | 43032 | 70157 | 5812 | 79865 | 199673 | 14376 | 2.58 | | 1/0 / 0 0 0 1/5 - | 0 - 0 | | | | | | | | | | | Snap-over separator 3/8" (inch) balls #### 4 Point Contact Type X $\Im F = 1.5$ Bearing corners are normally chamfered 6316 84151 210372 15988 2.73 72648 375.0 385.0 44306 400 **K36020XP0** 360 ① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. # Precision Tolerances & Recommended Fits for Reali-Slim MM Metric Series Bearings #### All dimensions in millimeters #### Kaydon Class 1 for Type A, C & X Bearings | Dogwing | | ring
neters | | & Axial
rout | Rotating
Duplex DF | | | Stationary Shaft or
Duplex DB Mounting | | | Bearing | Diametral | |--------------------------------|--------------------------------------|--------------------------------------|---------------|-----------------|--|--------------------------------------|-----|---|-----|-------------------|---------|-----------------------------| | Bearing
Size (mm
Series) | Bearing
Bore
Nominal
+.0000 | Bearing
O.D.
Nominal
+.0000 | Inner
Race | Outer
Race | Shaft
Diameter
Nominal
–.0000 | Housing
Bore
Nominal
–.0000 | | Diameter
minal | | ing Bore
minal | Ве | rance*
efore
allation | | 020 | 010 | 010 | .008 | .010 | +.010 | +.010 | 010 | 020 | 010 | 020 | 0.025 | 0.038 | | 025 | 010 | 010 | .008 | .010 | +.010 | +.010 | 010 | 020 | 010 | 020 | 0.025 | 0.038 | | 050 | 012 | 013 | .013 | .013 | +.012 | +.013 | 012 | 024 | 013 | 026 | 0.030 | 0.056 | | 060 | 015 | 013 | .013 | .013 | +.015 | +.013 | 015 | 030 | 015 | 030 | 0.030 | 0.056 | | 070 | 015 | 015 | .015 | .015 | +.015 | +.015 | 015 | 030 | 015 | 030 | 0.030 | 0.056 | | 080 | 015 | 015 | .015 | .015 | +.015 | +.015 | 015 | 030 | 015 | 030 | 0.030 | 0.056 | | 090 | 020 | 015 | .015 | .015 | +.020 | +.015 | 020 | 040 | 020 | 040 | 0.041 | 0.066 | | 100 | 020 | 015 | .015 | .015 | +.020 | +.015 | 020 | 040 | 020 | 040 | 0.041 | 0.066 | | 110 | 020 | 018 | .015 | .020 | +.020 | +.018 | 020 | 040 | 020 | 040 | 0.041 | 0.066 | | 120 | 020 | 018 | .020 | .020 | +.020 | +.018 | 020 | 036 | 020 | 036 | 0.041 | 0.066 | | 130 | 025 | 018 | .025 | .025 | +.025 | +.018 | 025 | 051 | 018 | 036 | 0.051 | 0.076 | | 140 | 025 | 025 | .025 | .025 | +.025 | +.025 | 025 | 051 | 025 | 051 | 0.051 | 0.076 | | 150 | 025 | 025 | .025 | .025 | +.025 | +.025 | 025 | 051 | 025 | 051 | 0.051 | 0.076 | | 160 | 025 | 025 | .025 | .025 | +.025 | +.025 | 025 | 051 | 025 | 051 | 0.051 | 0.076 | | 170 | 025 | 025 | .025 | .025 | +.025 | +.025 | 025 | 051 | 025 | 051 | 0.051 | 0.076 | | 180 | 025 | 030 | .025 | .025 | +.025 | +.030 | 025 | 051 | 030 | 061 | 0.051 | 0.076 | | 190 | 025 | 030 | .025 | .025 | +.025 | +.030 | 025 | 051 | 030 | 061 | 0.051 | 0.076 | | 200 | 030 | 030 | .030 | .030 | +.030 | +.030 | 030 | 061 | 030 | 061 | 0.061 | 0.086 | | 250 | 036 | 036 | .046 | .051 | +.036 | +.036 | 036 | 071 | 036 | 071 | 0.071 | 0.100 | | 300 | 036 | 036 | .046 | .051 | +.036 | +.036 | 036 | 071 | 036 | 071 | 0.071 | 0.100 | | 320 | 036 | 036 | .046 | .051 | +.036 | +.036 | 036 | 071 | 036 | 071 | 0.071 | 0.100 | | 340 | 036 | 036 | .046 | .051 | +.036 | +.036 | 036 | 071 | 036 | 071 | 0.071 | 0.100 | | 360 | 036 | 036 | .046 | .051 | +.036 | +.036 | 036 | 071 | 036 | 071 | 0.071 | 0.100 | ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. Total Width Tolerance—Duplexed Type A Bearings: Up thru 300 mm Bearing Bore +.000 -.254 Over 300 mm Bearing Bore +.000 -.508 Race Width Tolerance—Single Type C, X, A Bearings: Up thru 300 mm Bearing Bore +.000 -.254 Over 300 mm Bearing Bore +.000 -.254 # Metric Series Ball Bearings (BB Series) ### **Drop-in Replacements for Cross-Roller Bearings** Kaydon BB Metric Series four-point contact ball bearings are dimensionally interchangeable with cross-roller bearings. ### **BB Series Bearings Are Available to** Match the Bores and Widths of Common **Cross-Roller Bearings.** When factors such as cost, availability, corrosion resistance, tighter tolerances, torque, seal/shield options, and temperature resistance are important in your application, it pays to consider BB Series four-point contact metric ball bearings as an alternative to cross-roller bearings. The additional design flexibility they offer can often help you achieve your design objectives with optimum performance and economy. Additional features not commonly available in standard crossroller bearings include a protective package for corrosion resistance, custom sealing for extreme environments, application-specific lubrication and temperature capability. #### **Optimize Your Design Options** With additional features not commonly available in standard cross-roller bearings, BB Series bearings provide greater design flexibility. **Endurakote Plating**—For applications requiring superior corrosion resistance we offer our proprietary Endurakote plating. This thin, dense chrome plating gives AISI 52100 bearing material corrosion resistance equal to or better than that of AISI 440C stainless steel. Unlike many traditional chrome platings, the extremely hard surface of Endurakote plating doesn't peel and flake from the bearing race under stress, so corrosion resistance is retained and surface wear is minimized. The performance of Endurakote plating has been proven in critical military, aerospace,
and deep space applications. **Seals/Shields**—Standard industry seals are generally available from nitrile rubber. Kaydon can also provide custom seals manufactured from silicone or Viton® materials for applications where high temperature or extreme environments are likely to be encountered. **Temperature Capability**—Standard cross-roller bearings have a maximum full capacity operating temperature of only 212°F. In contrast, Kaydon bearings can operate at higher temperatures due to our heat treating procedures. **Lubrication Options**—Kaydon offers a full range of lubricants, allowing you to optimize bearing performance in a range of applications with special requirements for moisture resistance, hot or cold temperatures, vacuum, and low torque. **Separators**—The common roller spacer for many cross-roller bearings is a non-metallic composite. High temperature and/or horizontal axis applications, however, require non-standard materials or a non-standard separator design. Kaydon four-point contact ball bearings are available with separator options to meet a wide range of applications. Internal Fitup—Kaydon can help you optimize internal fitup of our BB Series four-point contact ball bearings to provide the desired operating performance. Pre-loaded bearings are recommended for greater stiffness, and diametral clearance is recommended for lower torque applications. #### **Metric Series Ball Bearings - BB Series (continued)** **Open Bearing** **Sealed Bearing** #### All dimensions in millimeters (Reali-Slim replacements for RB Series standard cross-roller bearings) | Model | KAYDON | Approx. | Bore | 0.D. | Width | | | Dynamic Capa | acity | |---------|----------|----------------|--------------|--------------|--------------|-----|------------|--------------|--------------| | Number | Part No. | Weight
(kg) | (nominal +0) | (nominal +0) | (nominal +0) | "R" | Radial (N) | Axial (N) | Moment (N-m) | | BB3010 | 39318001 | 0.1 | 30 -0.01 | 55 -0.013 | 10 -0.12 | 1 | 4874 | 6619 | 78 | | BB3510 | 39319001 | 0.11 | 35 -0.012 | 60 -0.013 | 10 -0.12 | 1 | 5031 | 6953 | 90 | | BB4010 | 39320001 | 0.12 | 40 -0.012 | 65 -0.013 | 10 -0.12 | 1 | 5423 | 7610 | 107 | | BB4510 | 39321001 | 0.13 | 45 -0.012 | 70 -0.013 | 10 -0.12 | 1 | 5796 | 8228 | 125 | | BB5013 | 39322001 | 0.24 | 50 -0.012 | 80 -0.013 | 13 -0.12 | 1 | 9297 | 12955 | 227 | | BB6013 | 39323001 | 0.3 | 60 -0.015 | 90 -0.013 | 13 -0.12 | 1 | 9905 | 14082 | 279 | | BB7013 | 39324001 | 0.31 | 70 -0.015 | 100 -0.015 | 13 -0.12 | 1 | 10866 | 15700 | 346 | | BB8016 | 39325001 | 0.62 | 80 -0.015 | 120 -0.015 | 16 -0.12 | 1 | 16465 | 23703 | 618 | | BB9016 | 39326001 | 0.73 | 90 -0.02 | 130 -0.015 | 16 -0.12 | 1.5 | 17387 | 25340 | 718 | | BB10020 | 39327001 | 1.21 | 100 -0.02 | 150 -0.015 | 20 -0.12 | 1.5 | 23487 | 34127 | 1102 | | BB11015 | 39328001 | 0.66 | 110 -0.02 | 145 -0.018 | 15 -0.12 | 1 | 13631 | 20565 | 652 | | BB11020 | 39329001 | 1.36 | 110 -0.02 | 160 -0.02 | 20 -0.12 | 1.5 | 24752 | 36481 | 1300 | | BB12025 | 39330001 | 2.13 | 120 -0.02 | 180 -0.02 | 25 -0.12 | 2 | 39040 | 56339 | 2197 | | BB13025 | 39331001 | 2.27 | 130 -0.025 | 190 -0.025 | 25 -0.12 | 2 | 40188 | 58526 | 2412 | | BB14025 | 39332001 | 2.5 | 140 -0.025 | 200 -0.025 | 25 -0.12 | 2 | 42747 | 62782 | 2726 | | BB15013 | 39333001 | 0.61 | 150 -0.025 | 180 -0.025 | 13 -0.12 | 1 | 15593 | 24075 | 965 | | BB15025 | 39334001 | 2.72 | 150 -0.025 | 210 -0.025 | 25 -0.12 | 2 | 43816 | 64861 | 2959 | | BB15030 | 39335001 | 4.54 | 150 -0.025 | 230 -0.025 | 30 -0.12 | 2 | 62792 | 91447 | 4475 | | BB20025 | 39336001 | 3.4 | 200 -0.03 | 260 -0.03 | 25 -0.12 | 2.5 | 50220 | 76688 | 4333 | | BB20030 | 39337001 | 5.72 | 200 -0.03 | 280 -0.03 | 30 -0.12 | 2.5 | 71471 | 107677 | 6435 | | BB20035 | 39338001 | 8.17 | 200 -0.03 | 295 -0.03 | 35 -0.12 | 2.5 | 91859 | 136518 | 8529 | | BB25025 | 39339001 | 4.09 | 250 -0.03 | 310 -0.035 | 25 -0.12 | 3 | 56074 | 87662 | 5891 | | BB25030 | 39340001 | 7.04 | 250 -0.03 | 330 -0.035 | 30 -0.12 | 3 | 79434 | 122769 | 8641 | | BB25040 | 39341001 | 9.08 | 250 -0.03 | 355 -0.035 | 40 -0.12 | 3 | 101244 | 155063 | 11489 | | BB30025 | 39342001 | 4.99 | 300 -0.035 | 360 -0.035 | 25 -0.12 | 3 | 60438 | 96311 | 7482 | | BB30035 | 39343001 | 11.8 | 300 -0.035 | 395 -0.035 | 35 -0.12 | 3 | 110452 | 172548 | 14399 | | BB30040 | 39344001 | 15.44 | 300 -0.035 | 405 -0.035 | 40 -0.12 | 3 | 110227 | 172548 | 14576 | | BB40035 | 39345001 | 12.03 | 400 -0.04 | 480 -0.04 | 35 -0.25 | 3.5 | 124554 | 201213 | 20560 | | BB40040 | 39346001 | 20.66 | 400 -0.04 | 510 -0.04 | 40 -0.25 | 3.5 | 126388 | 205145 | 21572 | | BB50040 | 39347001 | 22.7 | 500 -0.045 | 600 -0.045 | 40 -0.25 | 3.5 | 141029 | 235320 | 29099 | | BB50050 | 39348001 | 38.05 | 500 -0.045 | 625 -0.045 | 50 -0.25 | 3.5 | 142736 | 238959 | 30120 | | BB60040 | 39349001 | 27.24 | 600 -0.045 | 700 -0.045 | 40 -0.2 | 4 | 154053 | 263671 | 37565 | | BB70045 | 39350001 | 44.95 | 700 -0.045 | 815 -0.045 | 45 -0.25 | 4 | 165605 | 290610 | 47062 | | BB80070 | 39351001 | 98.52 | 800 -0.05 | 950 -0.05 | 70 -0.25 | 5 | 263269 | 468748 | 86420 | | BB90070 | 39352001 | 109.87 | 900 -0.05 | 1050 -0.05 | 70 -0.25 | 5 | 277597 | 504827 | 101535 | Note 1: Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L_{10} life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact Kaydon product engineering for values. Note 2: Standard bearings are supplied without seals and shields, and they are assembled with a light clearance. Alternate features can be obtained by adding the following suffix letter to the basic part number. U = single seal CO = standard clearance CCO = preload TT = double shield UU = double seal CI = greater than standard clearance T = single shield Check for availability. ### **Metric Series Ball Bearings - BB Series (continued)** #### All dimensions in millimeters | | Dawa | 0.0 | Width | Chan danid Diamatural | Radial and A | vial Punout | |--------------|----------------------|----------------------|--------------|------------------------------|--------------|-------------| | Model Number | Bore
(nominal +0) | 0.D.
(nominal +0) | (nominal +0) | Standard Diametral Clearance | Inner | Outer | | BB3010 | 30 -0.01 | 55 -0.013 | 10 -0.12 | 0.025-0.038 | 0.010 | 0.010 | | BB3510 | 35 -0.012 | 60 -0.013 | 10 -0.12 | 0.03-0.043 | 0.010 | 0.010 | | BB4010 | 40 -0.012 | 65 -0.013 | 10 -0.12 | 0.03-0.043 | 0.010 | 0.013 | | BB4510 | 45 -0.012 | 70 -0.013 | 10 -0.12 | 0.03-0.043 | 0.013 | 0.013 | | BB5013 | 50 -0.012 | 80 -0.013 | 13 -0.12 | 0.03-0.056 | 0.013 | 0.013 | | BB6013 | 60 -0.012 | 90 -0.013 | 13 -0.12 | 0.03-0.056 | 0.013 | 0.013 | | BB7013 | 70 -0.015 | 100 -0.015 | 13 -0.12 | 0.03-0.056 | 0.015 | 0.015 | | BB8016 | 80 -0.015 | 120 -0.015 | 16-0.12 | 0.03-0.056 | 0.015 | 0.015 | | BB9016 | 90 -0.02 | 130 -0.015 | 16 -0.12 | 0.041-0.066 | 0.015 | 0.015 | | BB10020 | 100 -0.02 | 150 -0.015 | 20 -0.12 | 0.041-0.066 | 0.015 | 0.015 | | BB11015 | 110 -0.02 | 145 -0.018 | 15 -0.12 | 0.041-0.066 | 0.015 | 0.020 | | BB11013 | 110 -0.02 | 160 -0.02 | 20 -0.012 | 0.041-0.066 | 0.015 | 0.020 | | BB12025 | 120 -0.02 | 180 -0.02 | 25 -0.12 | 0.05-0.08 | 0.020 | 0.020 | | BB13025 | 130 -0.025 | 190 -0.025 | 25 -0.12 | 0.05-0.08 | 0.025 | 0.025 | | BB14025 | 140 -0.025 | 200 -0.025 | 25 -0.12 | 0.05-0.08 | 0.025 | 0.025 | | BB15013 | 150 -0.025 | 180 -0.025 | 13 0.23 | 0.05-0.08 | 0.025 | 0.025 | | BB15025 | 150 -0.025 | 210 -0.025 | 25 -0.12 | 0.05-0.08 | 0.025 | 0.025 | | BB15030 | 150 -0.025 | 230 -0.025 | 30 -0.12 | 0.05-0.08 | 0.025 | 0.025 | | BB20025 | 200 -0.03 | 260 -0.03 | 25 -0.12 | 0.06-0.09 | 0.030 | 0.030 | | BB20030 | 200 -0.03 | 280 -0.03 | 30 -0.12 | 0.06-0.09 | 0.030 | 0.030 | | BB20035 | 200 -0.03 | 295 -0.03 | 35 -0.12 | 0.06-0.09 | 0.030 | 0.030 | | BB25025 | 250 -0.03 | 310 -0.035 | 25 -0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB25030 | 250 -0.03 | 330 -0.035 | 30 -0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB25040 | 250 -0.03 | 355 -0.035 | 40 0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB30025 | 300 -0.035 | 360 -0.035 | 25 -0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB30035 | 300 -0.035 | 395 -0.035 | 35 -0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB30040 | 300 -0.035 | 405 -0.035 | 40 -0.12 | 0.07-0.1 | 0.035 | 0.035 | | BB40035 | 400 -0.04 | 480 -0.04 | 35 -0.25 | 0.08-0.11 | 0.040 | 0.040 | | BB40040 | 400 -0.04 | 510 -0.04 | 40 -0.2 | 0.08-0.11 | 0.040 | 0.040 | | BB50040 | 500 -0.045 | 600 -0.045 | 40 -0.25 | 0.09-0.12 | 0.045 | 0.045 | | BB50050 | 500 -0.045 | 625 -0.045 | 50 -0.25 | 0.09-0.12 | 0.045 | 0.045 | | BB60040 | 600 -0.045 | 700 -0.045 | 40 -0.25 | 0.09-0.12 | 0.045 | 0.045 | | BB70045 | 700 -0.045 | 815 -0.045 | 45 -0.25 | 0.09-0.12 | 0.045 | 0.045 | | BB80070 | 800 -0.05 | 950 -0.05 | 70 -0.25 | 0.09-0.12 | 0.050 | 0.050 | | BB90070 | 900 -0.05 | 1050 -0.05 | 70 -0.25 | 0.1-0.13 | 0.050 | 0.050 | ### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 Need Service Fast? 1-800-514-3066 www.kaydonbearings.com # **Ultra-Slim Thin Section Bearings** Ideal for applications in robotics, inspection equipment, satellites, cameras... anywhere precise positioning and lightweight designs are critical. At just 2.5 mm wide, Ultra-Slim bearings are available in bore sizes ranging from 35 mm to 170 mm for an array of applications. Their compact profile allows you to use Ultra-Slim bearings in many highly confined spaces. Precision-engineered Ultra-Slim bearings are made of stainless steel for corrosion resistance. They are available in angular contact (Type A), radial contact (Type C), and four-point contact (Type X) styles. Torque figures shown are for single bearings with standard internal fit-up, standard lubricant at room temperature, and under 5 pounds thrust load. (See selection charts on the next page.) Note that Ultra-Slim
bearings are not designed to be preloaded and are not recommended for continuous rotation applications, as the cross-section cannot accommodate a separator. Hybrid bearings with ceramic balls are available upon request. These are used often when lubrication is marginal or when lower wear generation and/or lower torque levels are required. Figure 2-9 ### How to identify Ultra-Slim Bearings using our part number code | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |--------------|----------|---|-----------|---|---|-------|------|-----------|-----------|--------------| | Nomenclature | Material | | Bore (mm) | | | n(mm) | Туре | Separator | Precision | Internal Fit | | Example | S | 1 | 1 | 0 | 0 | 3 | С | S | 0 | K | ### **Explanation of position numbers:** #### Position 1 – Material S = AISI 440C races and balls (Standard for Series) #### Positions 2, 3 and 4 - Bore Nominal bearing bore in mm. #### Positions 5 and 6 – Width Nominal radial race width in mm. #### Position 7 – Bearing Type A = Angular Contact C = Radial Contact X = Four-Point Contact #### Position 8 – Separator S = Spacer balls F = Full complement of load balls #### Position 9 – Precision 0 = Kaydon standard Precision Class 1 (higher precision not available in this series) #### Position 10 – Internal Fit $A = 0.000 - 0.013 \, \text{mm} \, \text{clearance}$ $C = 0.013 - 0.025 \, \text{mm} \, \text{clearance}$ $E = 0.025 - 0.051 \, \text{mm} \, \text{clearance}$ $K = 0.000 - 0.013 \, mm \, preload$ $M = 0.013 - 0.025 \, mm \, preload$ empty = standard internal fitup if not specified ### **Performance and Application Considerations** Ultra-Slim bearings are unique in that their extremely thin cross section enables them to provide great size and weight reductions for light to medium duty applications with slow or intermittent rotation. Given the fact that these bearings will most likely be used in lightly loaded applications where saving weight and space are the main objective, the loading values shown assume that the shaft and housing will also be of light construction. This will allow for greater bearing ring movement under load than traditional heavy section bearings. Thus the loading limits for capacity are not based on ABMA standards. Depending on the support provided by the shaft and housing, this movement can create increased stress levels within the bearing. Distortion of the shaft and housing under load will transfer to the bearing, causing increased stress levels which could lead to premature failure and/or erratic torque conditions. The impact of non-uniform shaft and housing distortions is best found by testing. If problems are experienced, increased rigidity of the shaft and housing may be necessary. If the shaft and housing are of sufficient rigidity, it may be possible for the bearings to support greater loads than the loading limits provided. ### **Ultra-Slim Bearing Selection Data** | | Angular Contact Type A | | | | | | | | | | | | |-------------------|------------------------|-----------------|----------------|---------|----------------------|-----------|-----------|---------|--|--|--|--| | KINDON | | Dimensions in | n Millimeter | S | Capacities i | n Newtons | Loading | | | | | | | KAYDON | S | ize | Land Dia | ameters | Dynamic ₁ | Static2 | Limit (N) | Mass in | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | Radial | Radial | Thrust3 | Grams | | | | | | S03503AS0 | 35 | 41 | 37.2 | 38.8 | 383 | 382 | 1334 | 5 | | | | | | S06003AS0 | 60 | 66 | 62.2 | 63.8 | 552 | 649 | 1112 | 9 | | | | | | S07003AS0 | 70 | 76 | 72.2 | 73.8 | 609 | 756 | 1068 | 11 | | | | | | S07403AS0 | 74 | 80 | 76.2 | 77.8 | 632 | 799 | 1045 | 11 | | | | | | S08003AS0 | 80 | 86 | 82.2 | 83.8 | 663 | 863 | 1001 | 12 | | | | | | S09003AS0 | 90 | 96 | 92.2 | 93.8 | 716 | 970 | 956 | 13 | | | | | | S10003AS0 | 100 | 106 | 102.2 | 103.8 | 765 | 1077 | 890 | 15 | | | | | | S11003AS0 | 110 | 116 | 112.2 | 113.8 | 814 | 1183 | 867 | 16 | | | | | | S12003AS0 | 120 | 126 | 122.2 | 123.8 | 863 | 1290 | 823 | 18 | | | | | | S13003AS0 | 130 | 136 | 132.2 | 133.8 | 912 | 1407 | 778 | 19 | | | | | | S14003AS0 | 140 | 146 | 142.2 | 143.8 | 956 | 1514 | 734 | 21 | | | | | | S15003AS0 | 150 | 156 | 152.2 | 153.8 | 1001 | 1621 | 712 | 22 | | | | | | S16003AS0 | 160 | 166 | 162.2 | 163.8 | 1045 | 1727 | 689 | 24 | | | | | | S17003AS0 | 170 | 176 | 172.2 | 173.8 | 1085 | 1834 | 667 | 25 | | | | | ### Full complement or spacer ball 1/16" (inch) ④ F = 0.25 Bearing corners are normally chamfered | Radial Contact Type C | | | | | | | | | | | | | |-----------------------|------|-----------------|----------------|---------|----------------------|-----------|---------|--|--|--|--|--| | | | Dimensions in | Millimeters | | Capacities in | n Newtons | | | | | | | | KAYDON | S | ize | Land Di | ameters | Dynamic _① | Static2 | Mass in | | | | | | | Bearing
Number | Bore | Outside
Dia. | L ₁ | L_2 | Radial | Radial | Grams | | | | | | | S03503CS0 | 35 | 41 | 37.2 | 38.8 | 418 | 418 | 5 | | | | | | | S06003CS0 | 60 | 66 | 62.2 | 63.8 | 605 | 711 | 9 | | | | | | | S07003CS0 | 70 | 76 | 72.2 | 73.8 | 667 | 827 | 11 | | | | | | | S07403CS0 | 74 | 80 | 76.2 | 77.8 | 689 | 875 | 11 | | | | | | | S08003CS0 | 80 | 86 | 82.2 | 83.8 | 725 | 944 | 12 | | | | | | | S09003CS0 | 90 | 96 | 92.2 | 93.8 | 783 | 1062 | 13 | | | | | | | S10003CS0 | 100 | 106 | 102.2 | 103.8 | 841 | 1178 | 15 | | | | | | | S11003CS0 | 110 | 116 | 112.2 | 113.8 | 894 | 1295 | 16 | | | | | | | S12003CS0 | 120 | 126 | 122.2 | 123.8 | 943 | 1412 | 18 | | | | | | | S13003CS0 | 130 | 136 | 132.2 | 133.8 | 1001 | 1540 | 19 | | | | | | | S14003CS0 | 140 | 146 | 142.2 | 143.8 | 1050 | 1658 | 21 | | | | | | | S15003CS0 | 150 | 156 | 152.2 | 153.8 | 1099 | 1774 | 22 | | | | | | | S16003CS0 | 160 | 166 | 162.2 | 163.8 | 1143 | 1891 | 24 | | | | | | | S17003CS0 | 170 | 176 | 172.2 | 173.8 | 1192 | 2006 | 25 | | | | | | ## Full complement or spacer ball 1/16" (inch) \P F = 0.25 Bearing corners are normally chamfered | 4-Point Contact Type X | | | | | | | | | | | | |------------------------|------|-----------------|----------------|----------------|------------------|-----------|----------------|------------------|---------|--|--| | KAYDON | | imensions ir | | | Capacities i | n Newtons | Loadin | ıg Limit | | | | | Bearing | S | ize | Land Dia | ameters | Dynamic ① | Static@ | Loudin | .g =:::::: | Mass in | | | | Number | Bore | Outside
Dia. | L ₁ | L ₂ | Radial | Radial | Thrust③
(N) | Moment③
(N-m) | Grams | | | | S03503XS0 | 35 | 41 | 37.2 | 38.8 | 585 | 711 | 1045 | 7.9 | 5 | | | | S06003XS0 | 60 | 66 | 62.2 | 63.8 | 847 | 1208 | 934 | 11.8 | 9 | | | | S07003XS0 | 70 | 76 | 72.2 | 73.8 | 934 | 1407 | 890 | 13.0 | 11 | | | | S07403XS0 | 74 | 80 | 76.2 | 77.8 | 965 | 1487 | 867 | 13.4 | 11 | | | | S08003XS0 | 80 | 86 | 82.2 | 83.8 | 1015 | 1606 | 845 | 14.0 | 12 | | | | S09003XS0 | 90 | 96 | 92.2 | 93.8 | 1096 | 1805 | 801 | 14.9 | 13 | | | | S10003XS0 | 100 | 106 | 102.2 | 103.8 | 1177 | 2003 | 756 | 15.6 | 15 | | | | S11003XS0 | 110 | 116 | 112.2 | 113.8 | 1252 | 2201 | 734 | 16.6 | 16 | | | | S12003XS0 | 120 | 126 | 122.2 | 123.8 | 1320 | 2400 | 689 | 17.0 | 18 | | | | S13003XS0 | 130 | 136 | 132.2 | 133.8 | 1401 | 2618 | 645 | 17.2 | 19 | | | | S14003XS0 | 140 | 146 | 142.2 | 143.8 | 1470 | 2818 | 623 | 17.8 | 21 | | | | S15003XS0 | 150 | 156 | 152.2 | 153.8 | 1538 | 3016 | 601 | 18.4 | 22 | | | | S16003XS0 | 160 | 166 | 162.2 | 163.8 | 1600 | 3215 | 578 | 18.9 | 24 | | | | S17003XS0 | 170 | 176 | 172.2 | 173.8 | 1669 | 3413 | 556 | 19.2 | 25 | | | ## Full complement or spacer ball 1/16" (inch) \P F = 0.25 Bearing corners are normally chamfered ① Dynamic radial capacities are included for life calculation purposes. These are based on the assumption that the shaft and housing have adequate strength to support the loads without causing excessive distortion of the bearing rings. ② Static radial capacities are based on maximum allowable contact stresses. Adequate support of the races is assumed to help assure uniform ball support. Tigher loading limits may be achieved with sufficiently rigid supports that will better restrict the movement of the bearing races under load. Corner size is the maximum shaft or housing fillet radius that the bearing corners will clear. # Precision Tolerances & Recommended Fits for Ultra-Slim Bearings #### All dimensions in millimeters #### Kaydon class 1 for A, C, X type bearings | Bearing
Size | Size Tolerances Runouts | Race | | Rotating
Duplex DF | | | | Stationar
Duplex DB | | | Bearing
Diametral
Clearance*, | | | |-----------------|-------------------------|---------------|---------------|-----------------------|-------------------------|-----|------------------------|------------------------|-----------------------|---------|-------------------------------------|------------------------|-------| | (mm
Series) | Nominal
+0.000 | Inner
Race | Outer
Race | Sh | aft Diameter
Nominal | Н | ousing Bore
Nominal | | t Diameter
Iominal | | ısing Bore
Iominal | Type
Bef
Install | ore | | 035 | -0.013 | 0.010 | 0.010 | 35 | +0.013/-0.000 | 41 | +0.013/-0.000 | 34.987 | +0.000/-0.013 | 40.987 | +0.000/-0.013 | 0.030 | 0.046 | | 060 | -0.013 | 0.013 | 0.013 | 60 | +0.013/-0.000 | 66 | +0.013/-0.000 | 59.987 | +0.000/-0.013 | 65.987 | +0.000/-0.013 | 0.030 | 0.046 | | 070 | -0.013 | 0.015 | 0.015 | 70 | +0.013/-0.000 | 76 | +0.013/-0.000 | 69.987 | +0.000/-0.013 | 75.987 | +0.000/-0.013 | 0.030 | 0.046 | | 074 | -0.013 | 0.015 | 0.015 | 74 | +0.013/-0.000 | 80 | +0.013/-0.000 | 73.987 | +0.000/-0.013 | 79.987 | +0.000/-0.013 | 0.030 | 0.046 | | 080 | -0.013 | 0.015 | 0.015 | 80 | +0.013/-0.000 | 86 | +0.013/-0.000 | 79.987 | +0.000/-0.013 | 85.987 | +0.000/-0.013 | 0.030 | 0.046 | | 090 | -0.013 | 0.015 | 0.015 | 90 | +0.013/-0.000 | 96 | +0.013/-0.000 | 89.987 | +0.000/-0.013 | 95.987 | +0.000/-0.013 | 0.030 | 0.046 |
| 100 | -0.013 | 0.015 | 0.015 | 100 | +0.013/-0.000 | 106 | +0.013/-0.000 | 99.987 | +0.000/-0.013 | 105.987 | +0.000/-0.013 | 0.030 | 0.046 | | 110 | -0.013 | 0.020 | 0.020 | 110 | +0.013/-0.000 | 116 | +0.013/-0.000 | 109.987 | +0.000/-0.013 | 115.987 | +0.000/-0.013 | 0.030 | 0.046 | | 120 | -0.013 | 0.020 | 0.020 | 120 | +0.013/-0.000 | 126 | +0.013/-0.000 | 119.987 | +0.000/-0.013 | 125.987 | +0.000/-0.013 | 0.030 | 0.046 | | 130 | -0.013 | 0.020 | 0.020 | 130 | +0.013/-0.000 | 136 | +0.013/-0.000 | 129.987 | +0.000/-0.013 | 135.987 | +0.000/-0.013 | 0.030 | 0.046 | | 140 | -0.013 | 0.025 | 0.025 | 140 | +0.013/-0.000 | 146 | +0.013/-0.000 | 139.987 | +0.000/-0.013 | 145.987 | +0.000/-0.013 | 0.030 | 0.046 | | 150 | -0.013 | 0.025 | 0.025 | 150 | +0.013/-0.000 | 156 | +0.013/-0.000 | 149.987 | +0.000/-0.013 | 155.987 | +0.000/-0.013 | 0.030 | 0.046 | | 160 | -0.013 | 0.025 | 0.025 | 160 | +0.013/-0.000 | 166 | +0.013/-0.000 | 159.987 | +0.000/-0.013 | 165.987 | +0.000/-0.013 | 0.030 | 0.046 | | 170 | -0.013 | 0.025 | 0.025 | 170 | +0.013/-0.000 | 176 | +0.013/-0.000 | 169.987 | +0.000/-0.013 | 175.987 | +0.000/-0.013 | 0.030 | 0.046 | ① Diameter tolerances apply to average dimensions. Due to the thin nature of these bearings, they cannot be measured with 2 point gauges. Race Width Tolerance-Single Type C, X, A Bearings: All sizes +.000 -.127 Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact Kaydon for design assistance when required. ② The runout values apply to individual bearing races. ^{*} Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings. # Only from Kaydon: Reali-Slim TT Series Small-scale, Thin Section Turntable Bearings To save weight, reduce product envelope sizes and increase design flexibility — without compromising bearing performance and life — customers told us they'd welcome a more compact turntable bearing design. We responded by designing the first small-scale, thin section turntable bearings, for such demanding applications as robotics, radar antennae, and factory positioning and inspection tables... the Reali-Slim TT Series. The advantages of this series vs. conventional turntable bearings include: **Significantly smaller** size for greater design versatility and reduced weight; **Greater accuracy** — extended radial bearing section increases rigidity, with optional preload or clearances to meet application torque or deflection requirements; **Easier to use** — fast installation and changeout; Custom configurations to meet your application's specific needs — many drive options, gearing/timing belt, mounting hole types; and Designed to **withstand harsh operating environments**— AISI-440C steel races, steel reinforced seals. Figure 2-10 # The configurations and specifications you need for more compact, more precise turntable designs ### **Example of part number breakdown** Holes sized for #4-40 screws, tapped, countersunk, or through gears set at full depth involute, 64 DP., 20° pressure angle ### **Four-Point Contact Bearing (Reali-Slim TT Series)** Bearings are most often designed to handle either radial or axial load conditions. But the Reali-Slim TT Series four-point contact bearings have a unique inner and outer race geometry that enables a single bearing to carry three types of loading (radial, axial and moment) simultaneously. This makes it the bearing of choice for many applications since a single four-point contact bearing can often replace two bearings, providing a simplified design. Reali-Slim TT Series bearings may also be furnished with an internal diametral preload for those applications requiring greater stiffness or zero free play. This is accomplished by using balls that are larger than the space provided in the raceways. The balls and raceways, therefore, have some elastic deformation in the absence of an external load. Figure 2-11 #### **Reali-Slim TT Series Turntable Bearings (continued)** ### **Four-Point Contact Bearing (Reali-Slim TT Series)** | | | Dynamic | | | Static | | Static | Approx. | |-------------------|------------------|------------------|---------------------|------------------|------------------|---------------------|---------------------|------------------| | Basic Part Number | Radial
(lbs.) | Thrust
(lbs.) | Moment
(in lbs.) | Radial
(lbs.) | Thrust
(lbs.) | Moment
(in lbs.) | Torque
(in lbs.) | Weight
(lbs.) | | T01-00225 | 520 | 790 | 440 | 680 | 1,710 | 770 | 3.4 | 0.35 | | T01-00275 | 580 | 910 | 600 | 830 | 2,090 | 1,150 | 4.4 | 0.43 | | T01-00325 | 640 | 1,010 | 780 | 990 | 2,470 | 1,600 | 5.5 | 0.50 | | T01-00375 | 700 | 1,110 | 980 | 1,140 | 2,850 | 2,130 | 6.5 | 0.59 | | T01-00425 | 750 | 1,210 | 1,200 | 1,290 | 3,220 | 2,740 | 7.4 | 0.67 | | T01-00450 | 780 | 1,260 | 1,320 | 1,370 | 3,410 | 3,070 | 7.9 | 0.70 | | T01-00475 | 810 | 1,310 | 1,440 | 1,440 | 3,600 | 3,420 | 8.5 | 0.74 | | T01-00500 | 830 | 1,350 | 1,560 | 1,520 | 3,790 | 3,790 | 9.0 | 0.78 | | T01-00525 | 860 | 1,400 | 1,690 | 1,590 | 3,980 | 4,180 | 9.5 | 0.82 | | T01-00575 | 910 | 1,480 | 1,950 | 1,750 | 4,360 | 5,020 | 10.4 | 0.89 | | T01-00625 | 950 | 1,570 | 2,230 | 1,900 | 4,740 | 5,930 | 11.3 | 0.98 | | T01-00675 | 1,000 | 1,650 | 2,530 | 2,050 | 5,120 | 6,910 | 12.2 | 1.05 | Torque based on seal drag in addition to a light preload Note: Reali-Slim TT Series turntable bearings are custom designed to meet your application's needs. Contact Kaydon for lead time. ### Non-geared Bearings – All dimensions in inches | Part Number with
Through Holes | Bore | 0.D. | Inner Land | Outer Land | Inner Bolt
Circle | Number of holes | Outer Bolt
Circle | Number of holes | |-----------------------------------|-------|-------|------------|------------|----------------------|-----------------|----------------------|-----------------| | T01-00225PAA | 1.500 | 3.000 | 2.148 | 2.356 | 1.813 | 6 | 2.688 | 8 | | T01-00275PAA | 2.000 | 3.500 | 2.648 | 2.856 | 2.313 | 8 | 3.188 | 10 | | T01-00325PAA | 2.500 | 4.000 | 3.148 | 3.356 | 2.813 | 9 | 3.688 | 12 | | T01-00375PAA | 3.000 | 4.500 | 3.648 | 3.856 | 3.313 | 10 | 4.188 | 14 | | T01-00425PAA | 3.500 | 5.000 | 4.148 | 4.356 | 3.813 | 12 | 4.688 | 15 | | T01-00450PAA | 3.750 | 5.250 | 4.398 | 4.606 | 4.063 | 12 | 4.938 | 16 | | T01-00475PAA | 4.000 | 5.500 | 4.648 | 4.856 | 4.313 | 14 | 5.188 | 16 | | T01-00500PAA | 4.250 | 5.750 | 4.898 | 5.106 | 4.563 | 14 | 5.438 | 18 | | T01-00525PAA | 4.500 | 6.000 | 5.148 | 5.356 | 4.813 | 15 | 5.688 | 18 | | T01-00575PAA | 5.000 | 6.500 | 5.648 | 5.856 | 5.313 | 16 | 6.188 | 20 | | T01-00625PAA | 5.500 | 7.000 | 6.148 | 6.356 | 5.813 | 18 | 6.688 | 22 | | T01-00675PAA | 6.000 | 7.500 | 6.648 | 6.856 | 6.313 | 20 | 7.188 | 22 | ### **Externally Geared Bearings – All dimensions in inches** | Part Number with
Through Holes | Bore | Gear O.D. | Inner Land | Outer Land | Inner Bolt
Circle | Number of holes | Outer Bolt
Circle | Number of holes | Gear Pitch
Dia. | Number of teeth | |-----------------------------------|-------|-----------|------------|------------|----------------------|-----------------|----------------------|-----------------|--------------------|-----------------| | T01-00225EAA | 1.500 | 3.078 | 2.148 | 2.356 | 1.813 | 6 | 2.688 | 8 | 3.047 | 195 | | T01-00275EAA | 2.000 | 3.578 | 2.648 | 2.856 | 2.313 | 8 | 3.188 | 10 | 3.547 | 227 | | T01-00325EAA | 2.500 | 4.078 | 3.148 | 3.356 | 2.813 | 9 | 3.688 | 12 | 4.047 | 259 | | T01-00375EAA | 3.000 | 4.578 | 3.648 | 3.856 | 3.313 | 10 | 4.188 | 14 | 4.547 | 291 | | T01-00425EAA | 3.500 | 5.078 | 4.148 | 4.356 | 3.813 | 12 | 4.688 | 15 | 5.047 | 323 | | T01-00450EAA | 3.750 | 5.328 | 4.398 | 4.606 | 4.063 | 12 | 4.938 | 16 | 5.297 | 339 | | T01-00475EAA | 4.000 | 5.578 | 4.648 | 4.856 | 4.313 | 14 | 5.188 | 16 | 5.547 | 355 | | T01-00500EAA | 4.250 | 5.828 | 4.898 | 5.106 | 4.563 | 14 | 5.438 | 18 | 5.797 | 371 | | T01-00525EAA | 4.500 | 6.078 | 5.148 | 5.356 | 4.813 | 15 | 5.688 | 18 | 6.047 | 387 | | T01-00575EAA | 5.000 | 6.578 | 5.648 | 5.856 | 5.313 | 16 | 6.188 | 20 | 6.547 | 419 | | T01-00625EAA | 5.500 | 7.078 | 6.148 | 6.356 | 5.813 | 18 | 6.688 | 22 | 7.047 | 451 | | T01-00675EAA | 6.000 | 7.578 | 6.648 | 6.856 | 6.313 | 20 | 7.188 | 22 | 7.547 | 483 | #### Reali-Slim TT Series Turntable Bearings (continued) #### **Internally Geared Bearings – All dimensions in inches** | Part Number with
Through Holes | Gear
I.D. | 0.D. | Inner Land | Outer Land | Inner Bolt
Circle | Number of holes | Outer Bolt
Circle | Number of holes | Gear Pitch
Dia. | Number of teeth | |-----------------------------------|--------------|-------|------------|------------|----------------------|-----------------|----------------------|-----------------|--------------------|-----------------| | T01-00225NAA | 1.422 | 3.000 | 2.148 | 2.356 | 1.813 | 6 | 2.688 | 8 | 1.453 | 93 | | T01-00275NAA | 1.922 | 3.500 | 2.648 | 2.856 | 2.313 | 8 | 3.188 | 10 | 1.953 | 125 | | T01-00325NAA | 2.422 | 4.000 | 3.148 | 3.356 | 2.813 | 9 | 3.688 | 12 | 2.453 | 157 | | T01-00375NAA | 2.922 | 4.500 | 3.648 | 3.856 | 3.313 | 10 | 4.188 | 14 | 2.953 | 189 | | T01-00425NAA | 3.422 | 5.000 | 4.148 | 4.356 | 3.813 | 12 | 4.688 | 15 | 3.453 | 221 | | T01-00450NAA | 3.672 | 5.250 | 4.398 | 4.606 | 4.063 | 12 | 4.938 | 16 | 3.703 | 237 | | T01-00475NAA | 3.922 | 5.500 | 4.648 | 4.856 | 4.313 | 14 | 5.188 | 16 | 3.953 | 253 | | T01-00500NAA | 4.172 | 5.750 | 4.898 | 5.106 | 4.563 | 14 | 5.438 | 18 | 4.203 | 269 | | T01-00525NAA | 4.422 | 6.000 | 5.148 | 5.356 | 4.813 | 15 | 5.688 | 18 | 4.453 | 285 | |
T01-00575NAA | 4.922 | 6.500 | 5.648 | 5.856 | 5.313 | 16 | 6.188 | 20 | 4.953 | 317 | | T01-00625NAA | 5.422 | 7.000 | 6.148 | 6.356 | 5.813 | 18 | 6.688 | 22 | 5.453 | 349 | | T01-00675NAA | 5.922 | 7.500 | 6.648 | 6.856 | 6.313 | 20 | 7.188 | 22 | 5.953 | 381 | # The design features and options you asked for Custom Reali-Slim TT Series thin section bearings have a proven, four-point contact ball radial design, featuring a single row of balls with a unique gothic arch raceway and brass separators for low frictional torque. Radial, axial and moment load-capable, the bearings are prelubricated and ready for use; simply position the bearings on the mounting face and tighten the mounting screws! They are available with optional internal or external spur gear for ease of drive setup, or with non-geared designs. Geared options are 64 diametral pitch with 20° pressure angle and provide low-backlash service. Built-in seals are a low-torque design, and made of rugged, reliable, steel-reinforced nitrile rubber. Mounting holes are sized for #4-40 UNC fasteners with optional styles — .136 through holes and countersunk holes, and tapped through. Non-geared races have mounting piloting diameters controlled to .0008 inches. No gear with through holes External gear with tapped holes Externally geared bearing with countersunk holes Internal gear with tapped holes # Section 3 — Applications Engineering | | Page
Numbe | |-----------------------------------|---------------| | ■ Bearing Selection | 90 | | Capacity, Life, and Load Analysis | 95 | # **Bearing Selection** #### **Type C—Radial Contact** The Type C Radial Contact ball bearing is a single-row radial ball bearing with extra deep ball grooves in both rings (groove depth = 25% of ball diameter). Normally this bearing is assembled by eccentric displacement of the inner race within the outer race which permits insertion of about half of a full complement of balls. After insertion of the balls, the races are positioned concentrically and the balls are spaced about the entire circumference for assembly of the separator. This method of assembly is commonly termed "Conrad Assembly." An alternate method of assembly is to insert balls through a "filling slot" made by notching the raceway shoulder of one or both races. This method permits assembly with up to a full complement of balls for additional load capacity, however, there are limitations on the operating conditions and these are discussed under Separator Types. Type C bearings perform best with a small amount of clearance between the balls and races (diametral clearance). Standard bearings are supplied with clearances for: - Interference fitting between bearing races and mounting members; - Differential thermal expansion or contraction of steel races; - Misalignment between shaft and housing and other factors may require the clearance to be adjusted accordingly. The Type C radial contact bearing is designed to have ball to race contact in the plane of the ball centers when pure radial load is applied and thrust forces are absent. Necessary diametral clearance may be increased or decreased to meet operating conditions. While designed primarily for radial load application, the Type C bearing, without a filling slot, will accept some axial (thrust) load in either direction. Its ability to resist axial load, however, is dependent upon the amount of clearance in the bearing after installation. It is this clearance which allows the balls, under axial load, to contact the races at an angle, thereby offering resistance to such load. In the case of the bearing with a filling slot, the notches interrupt the ball contact paths under axial load, minimizing the dynamic thrust capability. Where axial load is present, therefore, rotation of the filling slot bearing must be restricted. By increasing the diametral clearance beyond the standard amount, the Type C bearing can have a greater angle of contact under axial load, and thus greater thrust capacity. In this case, it is proper to adjust the bearing against another bearing of similar construction to reduce axial movement under reversing thrust forces. Used in this manner, the bearing is essentially an angular contact rather than a radial contact bearing. ### Type A—Angular Contact Type A Angular Contact ball bearings differ from Type C bearings in that Type A bearings have sufficient diametral clearance to produce a substantial angle of contact for resistance to axial load. This contact angle is 30° in the standard bearing. As in the Type C bearing, extra deep ball grooves are used (25% of ball diameter). The distinguishing feature of the Type A bearing lies in the method of assembly. One ring, usually the outer, is counter- bored to reduce one shoulder of the raceway to the extent that with the assistance of a temperature differential between the two rings, the outer ring can be installed over the inner race, ball, and separator assembly. This provides a non-separable bearing capable of carrying greater radial loads while resisting a substantial axial force in one direction. With an axial force applied, the faces of the inner and outer rings are approximately flush to minimize preload adjustments. This assembly method permits the use of a greater complement of balls than is possible in the Type C bearing without filling slots, and together with the sizable contact angle, gives the Type A bearing its greater thrust capacity. Because of its unidirectional thrust capability, this bearing should be mounted opposed to another bearing such that an axial force is present to establish and maintain the contact angle and to minimize axial movement under reversing thrust loads. #### **Back-to-back Mounting** Figure 3-1 Typical mountings of Type A bearings are shown in Figures 3-1 and 3-2. In Figure 3-1, the bearings are mounted with the lines of contact converging outside of the bearings. This is commonly called a "back-to-back" mounting. In this figure, the bearings are adjustable through the inner races by use of shims under the inner race clamping ring. Sufficient shim thickness is provided initially to allow axial movement of the shaft relative to the housing. The total axial movement can then be measured and the shim thickness reduced by the amount of movement plus any additional amount desired for preload. When two bearings are opposed to each other to the extent that all internal clearance is removed and elastic deformation occurs between the balls and raceways, the bearings are said to be "preloaded." #### **Face-to-face Mounting** Figure 3-2 In Figure 3-2, the bearings are mounted "face-to-face" with the contact lines converging inward. Spacers are used between both the inner and outer races and adjustment is possible by varying the length of one spacer relative to the other. Normally, however, the spacers are equal in length and the bearings are furnished as a matched pair with a predetermined internal fit. If the outer race spacer were removed from this assembly, the bearings could be adjusted by use of shims under the outer race clamping ring. #### **Duplexed Bearings** Type A bearings are furnished as matched sets — available direct from the factory — when they are to be mounted adjacent or with equal length inner and outer race spacers. When required, Kaydon can supply assemblies with matched ground spacers. The arrangements shown in Figures 3-3, 3-4, and 3-5 are known as duplexed bearings — back-to-back, face-to-face, and tandem, respectively. Sets of three, four or more bearings can also be matched where conditions require additional capacity and there is insufficient space radially for larger bearings. The bearings in these sets are matched within close limits for size of bore and outside diameter. Each set is marked with a "V" across the bores and outside diameters at the high point of radial runout and indicate the proper orientation of the races at installation (Figure 3-5). The pairs shown in Figures 3-3 and 3-4 are normally furnished with the race faces ground to provide preload when installed. To accomplish this, a gap is provided between the inner races of the pair in Figure 3-3 and between the outer races of the pair in Figure 3-4. When the bearings are installed and clamped axially, the gap is closed, producing a preload on the bearings. Back-to-back arrangement of Figures 3-1 and 3-3 offers greater rigidity under moment loading and should be used when the space between single bearings is small or when a single pair of adjacent bearings is employed. Face-to-face arrangement is more tolerant of misalignment between the shaft and housing and should be considered when there are multiple pairs of bearings along an axis. When single bearings are mounted face-to-face, they must be spaced sufficiently to provide resistance to moment load. If required, a face-to-face pair can be mounted in conjunction with another bearing in a "fixed-float" arrangement with the pair in the fixed position. (Also see Section 5, Mounting.) Tandem bearing sets have single direction thrust capacity and must be mounted opposed to another bearing or set. Figure 3-3 Figure 3-4 Figure 3-5 Back-to-back (Type DB) Face-to-face (Type DF) Tandem (Type DT) Preload Gan Preload Gap Resistance Moment Arn When applying catalog load ratings to matched sets, the total radial capacity is considered equal to the single bearing radial rating multiplied by $N^{0.7}$, where N is the number of bearings in the set. The thrust capacity in each direction is considered equal to the single bearing thrust rating multiplied by $N^{0.7}$, where N is the number of bearings resisting thrust in that direction. Unless specifically requested, the outboard faces of bearing sets are not controlled. If outboard face flushness is required for preload purposes, universally ground bearings should be considered. On universally ground bearings, both inboard and outboard faces are matched under a specified gage load to control preload
and allow for mounting orientation flexibility. Type X—Four Point Contact The Type X Four-Point Contact ball bearing is distinguished from Types A and C by the geometry of its ball grooves. In Type C, the centers of the radii both lie in the plane of the ball centers (Figure 3-6). In Type A with the races and balls in angular contact, the centers of the groove radii are offset equal amounts on either side of the plane of the ball centers (Figure 3-7). In the Type X bearing the groove in each race has two radii whose centers are offset from the plane of the ball centers (Figure 3-8). The latter construction gives the Type X bearing its unique "Gothic Arch" configuration, making possible four contact points between a ball and the raceways. Type X bearings are assembled by the methods described in Type C bearings, either Conrad or filling slot. With a filling slot, both the dynamic radial and thrust capabilities are impaired by the interruption of the ball contact path, and speed of rotation must be limited. The depth of groove in the Type X bearing is the same as in Types A and C (25% of ball diameter). The deep groove combined with the four-point contact geometry enables this bearing to resist a combination of radial, thrust, and moment loading. The manner in which the bearing accomplishes this is similar to that of a pair of Type A bearings duplexed back-to-back. Figure 3-6 Type C Figure 3-7 Type A Figure 3-8 Type X Referring to Figure 3-9, an axial force applied to the inner race from right to left is passed from the race to the ball at point B. It is then transmitted through the ball to point D where it passes into the outer race and support structure. The line of action BD forms a nominal 30° angle with the radial centerline of the bearing. Because of the elastic deformation of the ball and the race grooves along the load-transmission line, the ball load is relieved at points A and C, permitting smooth rotation around an axis perpendicular to line BD. With an axial force applied to the inner race from left to right, a similar transmission of load occurs between points C and A. Figure 3-9 #### Moment or Overturning Load A moment or overturning load is similar to two thrust loads acting in opposite directions at diametrically opposite sides of the bearing. With a moment load, the loading on one side of the bearing will pass from point B to D, relieving points A and C. Directly across the bearing, the load passes from point C to point A, relieving points B and D. A radial load is resisted equally across the lines of contact CA and BD. Under combined loading the resistance is along both lines of contact with the magnitude of each reaction dependent upon the relationship of the individual loads. By its ability to resist radial, thrust, and moment loads in any combination, the Type X bearing is often able to replace two bearings—a pair of angular contact ball bearings, a pair of tapered roller bearings, or a combination of thrust and radial bearings, either ball or roller. As in the case of the Type C bearing, Type X bearings are normally supplied with diametral clearance. The latter bearing, however, is not dependent upon this clearance for its nominal contact angle and thrust capacity. On the contrary, where thrust or moment loading is considerable, the clearance should be minimized to prevent the angle of contact from becoming excessive. For many applications requiring greater stiffness, Type X bearings are furnished with an internal preload. This is accomplished by using balls larger in diameter than the space provided between the raceways. The balls and raceways in this case have some elastic deformation without the presence of external load. NOTE: Type X Bearings are designed to be used singularly. Use of two Type X bearings on a common shaft could result in objectionable friction torque. # Capacity, Life, and Load Analysis of Reali-Slim Ball Bearings #### ABMA 9:1990/ISO 281:1990 Many bearing manufacturers calculate dynamic radial capacity in accordance with the formulas in ABMA Standard 9 and ISO 281-1990. However, in Kaydon's judgment these equations are overly optimistic because they assume certain design details that are not valid for thin section bearings. The capacities of Kaydon bearings as calculated using these equations are included for comparison purposes only. Alongside these ABMA 9:1990/ISO 281:1990 capacities, readers will find Kaydon Radial Capacities, which are calculated using more realistic assumptions based on actual design details and validated by decades of fatigue life testing. Please see the Kaydon white paper "Not All Thin Section Bearings Are Created Equal," available at our website: http://www.kaydonbearings.com/white_papers_18.htm. #### **Increased Capacity** The values in Kaydon radial capacities are consistent with both ABMA Std. 9 and ISO 281 calculations, when the proper assumptions are considered. The increased capacities apply to bearings with standard internal clearance. The new values assume that a certain amount of clearance is left in the bearing after installation. The biggest increase is in the radial capacity of four-point contact (Type X) bearings. Under the old rating system, four-point contact bearings were given the same capacity as radial (Type C) bearings. However, in this type of bearing the ball loads are distributed over two lines of contact on each race. This gives lower contact stress and longer life, as demonstrated by Kaydon testing. #### Life The dynamic capacity values shown in this catalog are based on actual data from fatigue life testing. The capacities are based on 1,000,000 revolutions L_{10} fatigue life. This is the industry standard that was established for ease of calculation. It is not advisable to apply loads equal to the dynamic capacities in an actual application. Continuous rotation under these conditions would not normally yield acceptable life. L_{10} fatigue life is that life which 90% of a representative group of identical bearings can be expected to achieve or exceed before evidence of subsurface material fatigue appears. The life of the remaining 10% is unpredictable. The life which 50% of the bearings may be expected to achieve or exceed is approximately 5 times the L_{10} life. This is known as the L_{10} or median life. There is no significant difference between the dynamic capacity for inner race rotation versus outer race rotation. This is due to the relatively small ratio of ball diameter to pitch diameter in Reali-Slim bearings. Static load capacities are shown in this catalog. However, the actual static load a Reali-Slim bearing can withstand is dependent upon the amount of support provided by the shaft and housing. The published capacity numbers allow the user to quickly estimate the bearing L_{10} life for a one-dimensional load case. The life can be estimated using one of the following equations: $$L_{10} = \left(\frac{C}{P}\right)^3 \bullet 1,000,000 \text{ revolutions}$$ Where: $L_{10} = life in revolutions$ C = Kaydon dynamic rating P = Applied load (effective) or For determining the life in hours at a given speed of rotation the above formula can be changed to read: $$L_h = \left(\frac{C}{P}\right)^3 \bullet \left(\frac{16,667}{S}\right) \text{hours}$$ Where: $L_h = L_{10}$ life in hours S = Speed in RPM For multiple load cases or non-standard internal fits, the analysis becomes more complicated. Contact Kaydon Engineering for these cases or consult Reali-Design software available on our website: www.kaydonbearings.com. It should be noted that the capacities published in this catalog are best used for comparison purposes. The actual value of a life calculation is only valid for an individual load case and the internal fitup for which the number was derived. Since it is very rare to have a truly radial or axial or moment load, these are not normally used for a life calculation. ### **Load Analysis** Previous versions of this catalog have discussed applying the loads from a free body diagram to a bearing system and solving for each of four reactions. As there are generally three equations (one for radial, one for axial, one for moment loads) and four unknowns, one of the reactions has been assumed to be zero. Once the remaining reactions are resolved, the life of the bearing can be determined. #### **Capacity, Life, and Load Analysis of Reali-Slim Ball Bearings (continued)** This method had several drawbacks, including: - It suggested very low bearing life for systems with predominantly axial loads. - Internal bearing fitup could not be included in the life calculation. - All loading was assumed to be distributed around the bearing as though it were a pure radial load... regardless of its origin. Modern computers and software allow for a more complicated and accurate method of determining life. Illustrated here are the results of this process. The actual loads are applied to the bearing and the resultant load on each and every ball in that bearing is determined. From this data, the static safety factor and dynamic $L_{\rm o}$ life can be determined. To better understand this, the following should be considered: #### **Primary Radial Loading** - Larger clearances will have fewer balls carrying the loads, resulting in lower dynamic lives. - Larger preloads may overload the bearing before the loads are applied. ### **Primary Axial and Moment Loading** - Larger clearances will permit a higher contact angle than the ball has with the raceway, and thus better support the applied loading. - However, the ball-to-raceway contact area may spill over the edge of the race, causing other problems. - Larger preloads may again overload the bearing before the loads are applied. The method for calculating either a static safety factor or dynamic life requires a computer to determine the individual ball loads
throughout the bearing. When these have been calculated, the maximum loaded ball is used to determine a maximum stress level and thus a static safety factor. All of the ball loads are used in a weighted analysis to determine the dynamic $L_{\rm lo}$ life. Since these calculations require a computer, the mathematics required are not shown here. To complete such an analysis, utilize the Kaydon supplied software — Reali-Design or Reali-Design MM — available at www.kaydonbearings.com. To better understand these principles, graphical representations of ball distribution around each of three common bearing types are shown in Figures 3-10 through 3-12. Here the ball load distribution and magnitude can be visualized. The higher the peak, the higher the loads. **KA040CP0 with 100 lbs. radial load**Clearance in the bearing; few balls carry the load. This radial bearing contains clearance. There are only three balls supporting this load, with a very high maximum value for the bottom ball. Figure 3-11 KA040CP0K with 100 lbs. radial load Light preload in the bearing; all balls carry the load. This radial bearing contains a light preload. All the balls have some load on them and, as can be seen, the bottom middle ball has far less load than the example above. ### Capacity, Life, and Load Analysis of Reali-Slim Ball Bearings (continued) Figure 3-12 KA040CP0P with 100 lbs. radial load. Heavy preload. This radial contact bearing contains a very heavy preload. All the balls have load on them, and the load on the bottom ball is just as high as the bearing with clearance in the first example. - Increased Capacity - Increased Life - Backed by Theory and Testing ### Similar diagrams are shown below for other instances. Figure 3-13 #### KA040XP0 with 100 lbs. Radial Load Clearance in bearing; few balls carry the load. Figure 3-14 #### KA040XP0 with 100 lbs. Radial Load, 100 lbs. Axial Load Lower ball contact, mostly unloaded. Figure 3-15 #### KA040XP0 with 100 lbs. Radial Load, 100 lbs. Axial Load 30 Inch-lbs. Moment Load Figure 3-16 KA040XP0K with 100 lbs. Radial Load, 100 lbs. Axial Load 30 Inch-lbs. Moment Load #### Capacity, Life, and Load Analysis of Reali-Slim ball bearings (continued) Figure 3-17 shows a typical mounting of two angular contact bearings subject to external forces F_r and F_t . Figure 3-17 #### Load Diagram for a Back-to-Back Duplex Pair Radial Load = F_r Axial Load = F_t Moment Load = F_r a - F_r b Consult Kaydon's exclusive Reali-Design software for resultant load calculations. #### **Variable Load Cases** Often a bearing system must operate in several modes such as "idle" and "working." In this instance, the loads may vary substantially. It is advantageous to calculate the life of the bearing under the total loading spectrum. To do this, the individual life under each load case can be calculated alone, then combined to provide the system life for a particular duty cycle. To perform this calculation, break the loading up into discrete sections which can have their respective percentage of revolutions represented as part of the total, such as: | Case 1 | Case 2 | Case 3 | |---------------------|---------------------|---------------------| | Radial ₁ | Radial ₂ | Radial ₃ | | Axial ₁ | Axial ₂ | Axial ₃ | | Moment ₁ | Moment ₂ | Moment ₃ | | % time ₁ | % time ₂ | % time ₃ | | L, | L ₂ | L ₃ | Substitute the individual " L_n " lives into the equation below with " t_n " where $t_n = \%$ time, The total weighted L_{10} life for this system = $$L_{10w} = \frac{100}{\frac{t_1}{L_1} + \frac{t_2}{L_2} + \frac{t_3}{L_3}}$$ # Section 4 — Separator Types, Bearing Performance and Reali-Design Software | | Page
Number | |-------------------|----------------| | ■ Separator Types | 101 | | ■ Performance | 104 | | ■ Limiting Speeds | | | ■ Torque | | | Axis Deviation | | | ■ Reali-Design | 110 | # Overview of Separator Types Used in Reali-Slim Bearings | Code
Letter* | Description | Design Features | Precautions | Material | Design | |-----------------|---|--|--|--|---------| | Р | One piece formed ring with "snap-over" pockets. | Standard ball complement. Used in Type C and X bearings for "KA" through "KG" cross-section bearings. | Commercial type cage, not recommended for low torque applications. Consult factory for temperatures below -65°F and above 250°F. | Brass or non-metallic composite. | 7777 | | R | One piece formed ring with circular pockets. | Standard ball complement. Used in Type A bearings for "KA" through "KG" cross-section bearings. | Commercial type cage, not recommended for low torque applications. Consult factory for temperatures below -65°F and above 250°F. | Brass or non-metallic composite. | 000 | | L | One piece molded ring with "snap-over" pockets. | Standard ball complement. Used in Type C and X KAA cross-section bearings. | Consult factory for temperatures below -65°F and above 250°F. | Nylon. Fiberglass reinforced. | | | G | One piece molded ring with circular pockets. | Standard ball complement. Used in Type A KAA cross-section bearings. | Consult factory for temperatures below -65°F and above 250°F. | Nylon. Fiberglass reinforced. | 000 | | D | One piece machined ring with "snap-over" pockets. | Standard ball complement. Used in Type
C and X bearing when low torque,
lightweight or vacuum impregnation is
required. | Not recommended above 250°F. Longer lead time and higher cost than "P" type separators. | Phenolic laminate. | | | н | One piece machined ring with circular pockets. | Standard ball complement. Used in Type A bearing when low torque, lightweight or vacuum impregnation is required. | Not recommended above 250°F. Longer lead time and higher cost than "R" type separators. Use toroid ball spacer when possible. | Phenolic laminate. | • • • | | N | Molded strip with "snap-over" pockets | Slightly higher ball count, used in Type
C and X bearings. Available for all
diameters over 4 inches. | Shaft or housing protrusions can grab separator and remove from bearing. 180°F max suggested operating temp. | Nylon 12 | | | J | Molded strip with circular pockets | Slightly higher ball count, used in Type
A bearings. Available for all diameters
over 4 inches. | 180°F max suggested operating temp. | Nylon 12 | 000 | | X | One piece molded ring with "snap-over" pockets | Excellent for vacuums | Limited availability | PEEK | | | Q | One piece molded ring with circular pockets | Excellent for vacuums | Limited availability | PEEK | ••• | | M | Formed wire strip or segmental cage with "snap-over" pockets. | Increased ball complement. Used in Type A, C, and X bearings for greater capacity (approx. 150%) and higher temperature. | Higher torque and lower speed capability than "R" type separators. Comparatively high wear rate. Requires loading notch for "C" and "X" bearings. | 17-7 PH stainless steel | 北田子 | | W | Formed wire strip or segmental cage with "snap-over" pockets. | Used in Type C and X bearings for high temperature applications. Standard ball complement. | Higher torque and lower speed capability than "R" type separators. Comparatively high wear rate. | 17-7 PH stainless steel | 431-134 | | F | Full complement bearing. | Max. ball complement. Used in Type C, X, and A bearings for maximum capacity and stiffness. | High torque and low limiting speed due to ball rubbing. Not recommended for dynamic applications. Loading notches are required for "C" and "X" bearings. | Steel (Per ABMA Standard 10). | 0000000 | | S | Helical coil spring. | Reduced ball complement. Used in Type C and X bearings for low torque and high temperature. | Increased assembly cost. Should only be considered when PTFE spacer slugs cannot be used. Slow speed and light load only. | 300 Series stainless steel. | | | Z | Spacer slugs. | Standard ball complement. Used in Type C or X bearings for low torque. Prevents separator wind-up. | Not recommended for temperatures greater than 250°F or speeds in excess of 500 ft/min pitch line velocity. (Example: KA040CZ0 max speed = 450 rpm). | PTFE tubing | | | z | Toroid ball spacers. | Increased ball complement. Used in
Type A bearings for low torque.
Prevents separator wind-up. | Not recommended for speeds greater than 500 ft/min pitch line velocity. PTFE is limited to 250°F. Vespel' is limited to 500°F. | PTFE or Vespel* SP-1 polyamide plastic. | 00000 | | Z | Spacer ball. | Requires a loading notch for C and X assembly. Low speed capability.
Relatively high torque. | Increased ball complement. Used in Type A bearings for low torque. Prevents separator wind-up. | Steel per ABMA Standard 10.
(Spacer balls are smaller
than load carrying balls.) | 0000000 | # Separator Types The principal function of a bearing separator is to space the rolling elements uniformly, thereby preventing contact between them. Minute differentials in rolling element motion result from differences in individual rolling element loads and the inherent elasticity of bearing and mounting components. Without a separator some rolling elements will eventually contact each other. Due to the shape of the rolling elements and the opposite direction of motion of the contacting surfaces, a combination of relatively high contact stress and rapid motion is possible. Consequent abrasion of the rolling elements and residue of wear in the raceways affect life and torque characteristics, limiting the use of full complement bearings to slow speed applications where relatively large torque variations can be tolerated. Kaydon separators for Reali-Slim
bearings are designated by a single letter character in coded part numbers (page 3), standard P, R, L, and G separators have proved to be suitable for a wide range of operating conditions. Requirements, however, may dictate the use of different materials. This may affect capacities. For assistance in selecting Reali-Slim bearings, contact Kaydon Engineering. Operating temperatures for various separator materials are shown on page 100. # Continuous Ring "Snap-over Pocket" Separator Figure 4-1 - Pocket Designed for use in bearing types C and X, this style is installed after Conrad assembly of the races and balls. The tangs of the alternate "snap" pockets deform elastically to snap-over the balls for retention of the separator. Centered on the balls at room temperature, the separator becomes outer race land riding or inner race land riding when temperatures cause differential thermal expansion or contraction. Close control of roundness and wall thickness insures effective piloting in either case, limiting separator "whip" and friction between the separator and race lands for smooth operation. Different materials are available for unusual operating conditions including stainless steel and non-metallics such as phenolic laminate, PTFE, and PEEK. - Stainless steel separators are used in stainless steel bearings or high temperature applications for corrosion resistance. - Phenolic laminate is used where light weight and/or lubricant absorption is desired. - The "snap-over" non-metallic separator is ideal for high-speed applications of bearings too small in cross section for the two-piece riveted design (bearing Series C and lighter sections). It is also desirable in low speed, minimum torque applications. For more information on how to use our bearings, contact Kaydon Engineering. #### Orientation It is suggested that in an application where the bearing axis will be within 45° of vertical, the bearing be positioned with separator pocket openings down or that a shoulder of the shaft or housing be extended as added assurance of retention. Sealed and shielded bearings have this orientation instruction etched on the O.D. by an arrow and the word "up" as shown below. Figure 4-2 Correct bearing orientation is shown. #### **Separator Types (continued)** #### **Continuous Ring Circular Separators** Figure 4-3 - Continuous Ring Pocket Figure 4-4 - Riveted Ring Circular Pocket Designed for use in Type A bearings, the one-piece separator shown in Figure 4-3 is positioned around the inner race with the balls placed in pockets before the outer race is expanded thermally and dropped over the balls. This method of assembly permits the use of more balls than in the Conrad bearing Types C and X. In addition to the standard separators of brass, nonmetallic composite and reinforced nylon, this style can be furnished in phenolic laminate, stainless steel, and aluminum. Designed for use in non-standard bearings of Type C or Type X, the separator shown in Figure 4-4 is installed after Conrad assembly of the races and bearing and riveted together. Because of the space required for rivets, use is limited to Series D and heavier sections. Usually machined all over, this style is recommended in phenolic laminate for very high speeds. Where very high strength is required, it is furnished in bronze, aluminum, or stainless steel. As in the case of the continuous ring "snap-over" pocket separator, both of these styles are centered on the balls at room temperature, becoming either outer race land riding or inner race land riding as the temperature changes. #### **Segmental Separators** Segmental separators of either the ring or "snap-over" design offer advantages for certain applications. - 1. When larger diameter bearings are subjected to high temperatures, expansion differentials between the separator and the races may exceed the normal clearances provided. - 2. When oscillatory motion, variable loading and a vertical axis combine to cause differential ball travel with no "vacation" zone," torque may become objectionably high or erratic. A segmental separator may consist of a one-piece open ring or it may be composed of two or more segments. Where differential expansion creates a problem, sufficient clearance is provided between the ends of the open ring or between the several segments to allow for this expansion. Where torque is of concern, the selection of the number of segments is made based upon experience. In all other respects, segmental separators satisfy the above descriptions for Continuous Ring "Snap-over Pocket" Separators or Continuous Ring "Circular Pocket" Separators. Segmenting the separator imposes somewhat greater restrictions on the bearings. Maximum allowable speed of rotation is reduced due to the centrifugal force ("brake banding") energized by the segments against the outer race lands. Also, in the case of the "snap-over pocket" style, a shaft or housing shoulder should be extended to assure retention of the separator irrespective of the operating position of the bearing. See next page. # nce Section #### **Formed Wire Separator** Figure 4-5 When the need exists for maximum capacity and thus the greatest possible number of balls, a formed wire separator may be used to avoid the disadvantages of a full complement bearing. It has been most successfully employed in Type A bearings, where the greater number of balls can be installed without resorting to use of a loading slot. Use in bearing Types C and X should be restricted to very low speed applications. Comparatively high wear rate coupled with relatively light section can cause the wear life of the wire separator to be a limiting factor in the life a bearing, especially if the loads are high. However, where weight or space are at a premium and the added capacity is an important consideration, this separator may be considered a good compromise. A bearing with a wire separator and maximum allowable ball complement has a static load capacity of 180% of the catalog static rating. ### **Toroid Separators** Figure 4-6A #### **PTFE Spacer Slugs** Figure 4-6B #### **Spacer Balls** Figure 4-6C ### **Helical Spring Separators** Figure 4-6D In some critical positioning applications, uniformity of torque is more important than the actual mean torque level. Specially designed toroids (Figure 4-6A), PTFE spacer slugs (Figure 4-6B), spacer balls (Figure 4-6C) or helical compression springs (Figure 4-6D) have proven in a number of such instances to be satisfactory for ball separation — by their nature they give a large amount of individual and cumulative circumferential freedom to the balls. To prevent this freedom from being abused, however, speeds must be low and loads comparatively light. Applications involving use of these separators should be referred to Kaydon engineering for review and recommendation. # **Limiting Speeds** The following limiting speed information is provided for reference only. For actual speeds, use the Reali-Design software found on our website, www.kaydonbearings.com. The determination of maximum safe operating speeds is largely empirical. Various complex factors play a part in limiting the speed of rotation, some of which are: - Bearing diameter - Ratio of bearing diameter to cross-section - Bearing type and internal configuration - Ratio of ball groove radius to ball diameter - Bearing internal fit-up (diametral clearance or preload) - Operating contact angle(s) - Bearing precision (runouts) - Ball separator material and design - Precision of mount (roundness, flatness under load) - Lubrication - Ambient temperature and provision for heat dissipation - Seals - Loads - Life requirement While precise speed limits cannot be set, experience in actual applications and in the Kaydon test laboratories can serve as a basis for setting general limits. Figure 4-9 takes into account some of the factors and assumes proper installation and adequate provision for heat dissipation. These limits are based upon achieving the full service life of 1,000,000 revolutions. If a shorter life is acceptable, higher speeds may be tolerated, except for bearings using formed wire and helical spring separators. For speeds near or over the limits in the table, special attention must be given to lubrication and heat. Greases should be of types specially formulated for high speed bearings. Frequency of regreasing must be adequate to insure presence of lubricant at all times. If oil is used, viscous drag should be minimized by controlling the level, using slingers and/or metering small amounts as a liquid or mist. Windage effects at high speeds can make the introduction of oil to the critical surfaces very difficult, and the design of the lubrication system then becomes important. Please consult lubrication manufacturer. Generally speaking, operating temperature will be limited by the allowable maximum temperature for the lubricant. If, however, bearing temperature is expected to exceed 250°F for extended periods, the bearings should be given stabilization treatment by Kaydon. This treatment will permit operation at temperatures up to 400°F. While maximum temperature is important, consideration must also be given to possible temperature differential across the bearing. Generally, heat is lost through the housing at a higher rate than through the shaft. The housing fit and the bearing internal clearance before installation must be sufficient to allow for this as well as for the shaft fit if the necessary running clearance is to be realized. # **Examples of Limiting Speed Calculations Example 1 (Standard Bearing)** Limited speed calculation for bearing part number KG040XP0. **Conditions:** light thrust loads (<20%), grease lubrication. From Figure 4-7: slimness symbol = I From Figure 4-8: derating factor = 1.0 **From Figure 4-9:** Type X; Separator P; Grease; Class 1; Charted figure = 9 **Calculation:** N = (1.0) (9) (1000) = 2,250 ### **Example 2 (High Performance Bearing)** Limiting speed
calculation for bearing number KD100AH6. Conditions: loading at 25%, oil lubrication From Figure 4-7: slimness symbol = II From Figure 4-8: derating factor = 0.9 **From Figure 4-9:** Type A; Separator H; Oil; Class 6; Charted figure = 32 **Calculation:** $N = \underline{(0.9)(32)(1000)} = 2,880$ 10 #### **Limiting Speeds (continued)** Figure 4-7 - Slimness Symbol (S_s) # Limiting Speeds for Unsealed, Lightly Loaded Reali-Slim Ball Bearings Limiting Speed (N) = $(F_l) (C_f) (1000)$ D where: D = Bearing bore in inches N = RPM Figure 4-8 - Derating Factor (F_I) | For bearings loaded to following percent of dynamic rating | Multiply DN values by following factors | |--|---| | 20 | 1.0 | | 33 | .9 | | 50 | .8 | | 67 | .7 | | 100 | .5 | | 150 | .2 | Figure 4-9 - Charted Figures (C_f) | | | | | PRECISION CLASS AND LUBRICATION |-----------------------------|---------------------------------------|-------------------|----------------|---------------------------------|-----|-----|----|---------|----|----|----|-----|-----|----|-----|----|-----|----|----|-----|------|-----| | Bearing Type | Load
Conditions | Separator
Type | CLASS 1, 3 & 4 | | | | | CLASS 6 | | | | | | | | | | | | | | | | | | Турс | | GRE | ASE | | | 0 | IL | | | GRE | ASE | | | 0 | IL | | | OIL | MIST | | | Slimness Syn | nbol from Fi | gure 4-7 | -1 | Ш | Ш | IV | 1 | Ш | Ш | IV | | C
with Diametral | Radial | P, L, X | 15 | 12 | 9 | 6 | 21 | 18 | 15 | 12 | 21 | 18 | 15 | 12 | 27 | 24 | 21 | 18 | 30 | 27 | 24 | 21 | | Clearance | NaUlai | K | 20 | 16 | 12 | 8 | 28 | 24 | 20 | 16 | 28 | 24 | 20 | 16 | 36 | 32 | 28 | 24 | 40 | 36 | 32 | 28 | | Α | Radial | R | 15 | 12 | 9 | 6 | 21 | 18 | 15 | 12 | 21 | 18 | 15 | 12 | 27 | 24 | 21 | 18 | 30 | 27 | 24 | 21 | | Spring Loaded or | and/or | G, H | 20 | 16 | 12 | 8 | 28 | 24 | 20 | 16 | 28 | 24 | 20 | 16 | 36 | 32 | 28 | 24 | 40 | 36 | 32 | 28 | | Axially Adjusted | Thrust | М | 8 | 6 | 5 | 3 | 11 | 9 | 8 | 6 | 11 | 9 | 8 | 6 | 14 | 12 | 11 | 9 | 15 | 14 | 12 | 11 | | X | Thrust
Only | P, L, X | 9 | 8 | 7 | 6 | 11 | 10 | 9 | 8 | 11 | 10 | 9 | 8 | 14 | 12 | 11 | 9 | 15 | 14 | 12 | 11 | | with Diametral
Clearance | Radial Only
or Combined
Loading | P, L, X | 3.0 | 2.5 | 2.0 | 1.5 | 4 | 3.5 | 3 | 2 | 4 | 3.5 | 3 | 2 | 4.5 | 4 | 3.5 | 3 | 5 | 4.5 | 4 | 3.5 | # **Torque Considerations** Torque, as it applies to bearings, is defined as the moment required to turn the rotating race with respect to the stationary race. Usually the torque requirement of a ball bearing is only a small part of the demand of a mechanical system. In many Reali-Slim bearing applications, however, masses and consequent inertias are slight and the amount of work being done is not great. In such cases, it may be important to know as accurately as possible how much turning effort must be provided. Many factors contribute to the resistance to rotation of a lightly loaded anti-friction bearing, and most of this resistance comes from the more unpredictable ones—separator drag; viscous drag of the lubricant; minute deviations from true geometry in the balls, race ways, and mounting surfaces of bearing, shaft, and housing; internal fit-up of the bearing; and the presence of contaminants. Bearings can be furnished to a maximum torque level specification. In the selection of the lubricant and lubricating system, their effects on torque should be kept in mind. To be considered are operating temperatures; speeds of rotation; type, viscosity and quantity of lubricant. All are major factors in determining lubricant drag. Please consult lubrication manufacturer. In tolerancing the shaft and housing it is important to set limits for out-of-roundness and out-of-flatness of the bearing seats. For normal requirements a good rule of thumb is to use the bearing radial and axial runout tolerances as the respective limits. For critical torque applications, closer tolerances should be specified since even a very small amount of localized internal preload (negative clearance) will create surprisingly large ball loads and consequent high torque. Where torque must be minimized it is important to limit out-of-roundness of housing or shaft to values which will insure against complete loss of internal clearance. Cleanliness is extremely important in maintaining uniformity of torque as well as a low level of torque. Very small amounts of microscopic particles of lint, dust, and other common contaminants can cause bearing torque to vary several hundred percent in just a few degrees of rotation. For this reason bearings should be kept in their original unopened package until time for installation. Every effort should be made to protect them from foreign matter, whether or not torque is critical. The accompanying charts show approximate torque levels of Reali-Slim bearings under stated conditions. Estimates can be furnished for more unusual situations. Information submitted should contain all operating conditions of load, speed, lubricant, and environment (including temperature), together with a print of the intended mounting, showing materials and radial sections. If a limit has been set on permissible system error in terms of axis deviation — radial translation, axial translation, or angular rotation (page 108) — this information should also be submitted. Additional processing is used to achieve the lowest possible torque levels. High precision races and balls, super-finished ball tracks, and precisely set internal fit-ups assure optimum performance. - Low-torque ball separators - Clean-room assembly - Factory-lubricated bearings - ABMA Grade 10 balls - Super-finish ball track #### **Materials** | Races | AISI 52100 (Precision Class 6) | |-------------------|-------------------------------------| | Balls | AISI 52100 (Grade 10) | | Cage (Type A) | PTFE or Vespel® toroid ball spacers | | Cage (Types C, X) | Slugs | # Starting Torque vs. Load # Torque curves for mounted Reali-Slim bearings can be calculated and provided by Kaydon Product Engineering Figure 4-10 Figure 4-12 Figure 4-11 Figure 4-13 ### **Notes Applying to These Charts** - 1. Values shown are statistical ratings* based on: - Kaydon Precision Class 1 bearings with some internal clearance remaining after installation - A rigid mounting, round and flat within respective radial and axial bearing runout limits - Light oil lubrication - Room temperature - 2. Running torque at speeds up to 10 RPM usually averages from 25 to 50% of starting torque, and increases with increasing speed to as much as 200% at maximum allowable diametral clearance (page 109). - 3. Interpolate for intermediate sizes. - ${\bf 4.}\, Curve\, number\, indicates\, bearing\, bore\, in\, tenths\, of\, an\, inch.$ - *Usually not more than 10% of a group of bearings will have torque demands higher than those shown. # Bearing Axis Deviation Due to Clearance and Deflection Reali-Slim bearings are often used in applications where the position of a rotating part relative to the stationary structure is critical. Knowledge of the displacement of the axis of rotation and the factors contributing to it are thus important. The axis of rotation can be displaced from its true position in three ways—radially, axially, and angularly. These deviations are referred to as radial translation, axial translation, and tilt (angular rotation) respectively. In addition to the obvious effects of bearing runout, total deviation of bearing axis in any one of the above conditions is due to the effects of bearing diametral clearance and elastic deflection (deformation) at the ball or roller contacts. The diametral clearance after installation changes due to the combined effects of external fitting practice, differential thermal expansion or contraction of the bearing races and mounting structures, and relative rigidity of the races and mating parts. Elastic deflection at the ball or roller contacts results from the externally applied bearing loads and is influenced by ball or roller diameter, race groove radius, raceway diameters, and contact angle. The following three equations are given to aid in determining displacement. The internal diametral clearance (DC) must be calculated or approximated. The remaining independent variables can calculated with Kaydon's easy-to-use Reali-Design software. (see pages 110-111). RD + DCAD + ACMD + AC/PD #### Where: RT Radial Translation - in inches **Axial Translation** - in inches **Angular Rotation** - in inches/ inch or radians Radial deflection due RD to radial load - in inches Axial deflection due to axial load - in inches MD = Moment deflection due to moment load - in inches/ inch or radians Diametral clearance - in inches Axial clearance - in inches Pitch diameter - in inches The equations may be used in applications where the radial, axial, or moment load is applied singly or where one type of loading predominates. For assistance in selecting Reali-Slim bearings, contact Kaydon Engineering. Computer-generated reports and graphs for Reali-Slim bearings are available from Kaydon engineering and from our Reali-Design computer software, available for download at www.kaydonbearings.com. ### Axial Clearance vs. Diametral Clearance Figure 4-14 Figure 4-15 #### **CONTACT Kaydon at —** Kaydon Bearings • Muskegon, Michigan 49443 Telephone: 231-755-3741 • Fax: 231-759-4102 **Need Service Fast?** 1-800-514-3066 www.kaydonbearings.com # Simplify Your Bearing Selection With Free Reali-Design Software Do you know the Reali-Slim Part Number Reali-Design software makes it easy to select the best Reali-Slim bearing for your application, and is exceptionally easy to use. Here is a quick orientation. After a simple registration process at our website, www.kaydonbearings.com, go to the Resources tab at the top our home page. In the drop-down menu, choose "Reali-Design engineering software" to
download either Reali-Design (for inch series bearings) or Reali-Design MM (for metric series bearings). Both give you the option to work in U.S. units (inches and lbs.) or SI units (mm and Newtons). When the start-up screen appears, click on "Reali-Design Bearing Selection" or wait five seconds. Next, you can choose to work in U.S. units (inches and lbs.) or SI units (mm and Newtons). You may toggle between units any time, and the background color changes to remind you which units you are using. Designers unfamiliar with Reali-Slim bearings will find the Introduction and Bearing Training sections useful. The flow chart below starts with the key question for using the program: "Is the Kaydon Part Number Known?" If the answer is "Yes," you simply enter the number and click the "Next" button. The Kaydon part number will appear in red, underlined. If you don't know the Kaydon part number, the software will help you select one. Input key parameters and you'll see a list of appropriate Reali-Slim bearings. Criteria include: Envelope size Loads Thumbnail image Matching bearing selections Bearing L₁₀ life Limiting speed actual number of characters required is either 8 A user-friendly flow chart starts the search, either for a known part number or for bearings that will meet your search criteria. #### **Simplify Your Bearing Selection With Free Reali-Design Software (continued)** Reali-Design will graph key performance factors such as: - starting torque (estimated, unmounted, and adjustable to your shaft and housing) - radial deflection - axial deflection - moment deflection The deflection graphs are based upon your selected preload and application loads, and can be saved or printed. Reali-Design software lets you toggle back and forth between these and the Torque vs. Preload data to determine the recommended Kaydon bearing preload for your application. It will also project bearing life for you, in revolutions or hours. All you have to do is input the anticipated load. For a savable Word document with the most-requested parameters for that part number — dimensions, part number breakdown, tolerances, recommended shaft and housing fits, static and dynamic capacity ratings, number of balls and limiting speeds — click on the Data Sheet box. In countless applications around the world, Reali-Design and Reali-Design MM software are making the job of the design engineer easier. And they're free! To get your copy, go to the Kaydon website or call Kaydon Bearings at 800-514-3066. The software will graph key performance data for you (e.g., moment, radial or axial deflection). Key parameters, like desired bearing load, are easy to input. A click on the "Data Sheet" box produces a Word document with a cross-section, dimensions and performance data. # Section 5 — Mounting, Installation and Maintenance of Reali-Slim Bearings | | Page
Numbe | |--|---------------| | ■ Mounting | 113 | | Inspection and Installation Procedures | 118 | | Lubrication and Maintenance | 120 | ### Mounting **Introduction**: Reali-Slim thin section ball bearings have a cross-section thickness that is much thinner than standard bearings of the same diameter, and are therefore more sensitive to shaft and housing fits. Proper mounting is essential to make sure that the bearing functions as intended. There are a number of factors to consider when mounting a bearing, including: bearing style and orientation, the direction and magnitude of the applied loads, allowable free play in the bearing, the maximum allowable torque, shaft and housing materials, operating temperature, and which ring is rotating. **Radial (Type C) Bearings**: Radial bearings are typically used when the applied loads are predominantly in the radial direction. If two bearings are used on opposite ends of a long shaft, then one of the bearings should be allowed to float in the axial direction (see Figure 5-1). This is done so that thermal expansion of the shaft or housing does not induce an axial (thrust) force into the radial bearing. Figure 5-1 The recommended shaft and housing sizes for radial bearings are found in the tolerance tables. Kaydon generally recommends a light press fit between the bearing and either the shaft or housing, whichever side is rotating. A slight amount of clearance is recommended for the non-rotating (stationary) side. Most radial bearings are supplied with an internal diametral clearance. Using the recommended fits assures that the bearings will not become radially tight after installation, which could affect bearing life and performance. Please note that the recommended fits apply only to bearings with "standard" clearance, which is also shown in the tolerance tables. They also apply only to steel shafts and housings, or room temperature applications. If dissimilar metals are used, then the fits will change with temperature. This could cause the bearing to become radially tight, leading to excessive friction torque. When bearings are supplied with a diametral preload, a slight clearance is recommended for both the shaft and housing. Kaydon also recommends that face clamps (See Figure 5-2) be used with all bearings. The user should not rely solely on a press fit to hold the bearing in place. Figure 5-2 **Four-Point Contact (Type X) Bearings:** Four-point contact bearings are used when there is an axial (thrust) applied load or some combination of radial, thrust and moment loads. If two bearings are used on the opposite ends of a long shaft, the second bearing should be a radial (Type C) bearing, and it should be allowed to float as shown in Figure 5-3. Kaydon does not recommend using two four-point contact bearings on the same shaft. Figure 5-3 Recommended shaft and housing sizes for four-point contact bearings can be found in the tolerance tables. As with radial bearings, these fits only apply to bearings supplied with the standard clearance, and to steel shafts and housings or room temperature applications. Four-point contact bearings can also be supplied with a diametral preload. Where preloaded bearings are used, there should be a slight clearance to both the shaft and housing. A single four-point contact bearing is capable of taking an axial (thrust) load in both directions. It is also capable of taking radial and moment loads. However, this type of bearing typically has higher friction than a radial (Type C) or an angular contact (Type A) bearing of the same size. Therefore, for torque-sensitive and high-speed applications, duplex pairs of angular contact bearings are generally used in place of a single four-point contact bearing. Angular Contact (Type A) Bearings: Angular contact ball bearings can take an axial (thrust) load in only one direction, and therefore are almost always used in pairs. They can be used in either a back-to-back (DB) arrangement or a face-to-face (DF) arrangement, as described in the Bearing Selection section on page 91. Angular contact pairs are normally used with some amount of axial preload to remove all free play and increase stiffness. Angular contact bearings can be purchased as matched pairs where the axial preload is set by the factory, or as individual bearings where the axial preload is set during installation. When angular contact bearings are purchased as a matched pair—called a "duplex pair"—the inner and outer rings simply need to be clamped in place as shown in Figure 5-4. For bearings with an axial preload, there should be a slight clearance between the bearing and both the shaft and housing. If a third bearing is used on the opposite end of a long shaft, it should be either a single radial or a face-to-face (DF) pair. It should also be free to float in the axial direction, (see Figure 5-4). Kaydon does not normally recommend using two back-to-back (DB) bearing pairs on the same shaft. Figure 5-4 **Back-To-Back (DB) Mounting:** If angular contact bearings are purchased as individual bearings, the axial preload needs to be set during installation. If the bearings are used in a back-to-back (DB) arrangement, the preload is set by pressing the inner rings of the two bearings toward each other. The axial preload is set using shims, as shown in Figure 5-5. Figure 5-5 If the thrust load is applied in only one direction, then the bearings can also be preloaded using a wave spring, as shown in Figure 5-6. Figure 5-6 For a back-to-back (DB) mounting, Kaydon typically recommends using a slight press fit between the bearing OD and the housing. A clearance fit is required between bearing and shaft so the inner rings are free to move in the axial direction. The recommended shaft and housing sizes are shown in the tolerance tables. Please note that these fits are for steel shafts and housings or for room temperature applications. If dissimilar metals are used, then the fits will change with temperature. In that case looser fits may be advisable to prevent excessive friction torque at high and low temperatures. The life and load-carrying capacity of a pair of angular contact bearings under an applied moment load can be increased by spacing the bearings further apart (Fig. 5-7). The angular deflection (tilt) of the shaft under an applied moment also decreases as the spacing increases. However, the bearings can become more sensitive to differential thermal expansion if the shaft and housing are different materials or if they operate at different temperatures. Figure 5-7 **Face-To-Face (DF) Mounting:** In a face-to-face (DF) mounting, the preload is set by pressing the outer rings toward each other (Fig. 5-8). The preload can also be set with shims or wave springs. For this type of mounting a slight press fit is used between the bearing I.D. and the shaft. A slight clearance is required between the bearing O.D. and housing. The recommended shaft and housing sizes for DF mounting can be found in the tolerance tables. As with the DB mounting, if dissimilar metals are used then looser fits may be
necessary to prevent excessive friction torque at high and low temperatures. Figure 5-8 - Face to Face #### **General Recommendations** Orientation: Kaydon recommends that radial (Type C) and four-point contact (Type X) bearings that use a "snap-over" or "crown" type ball separator be mounted with the solid side of the separator facing up and the pocket openings facing down if the shaft orientation is within 45° of vertical. These bearings are marked with an "UP" arrow to show proper orientation. For horizontal shafts, there is no preferred orientation. Figure 5-9 Single angular contact (Type A) bearings can only take an axial (thrust) load in one direction. The outside diameter of these bearings is marked with an arrow and the word "THRUST" to indicate the direction that a thrust load can be applied to the outer ring. When these bearings are mounted in a back-to-back (DB) arrangement, the arrows should point away from each other. In a face-to-face (DF) arrangement, the arrows should point toward each other. Figure 5-10 Angular contact bearings purchased as a matched (duplex) set will have a "V" marked across the O.D. and I.D. of both bearings. During installation these "V" marks should be aligned with each other. (For vertical shafts it does not matter whether the "V" is facing up or down.) The "V" marks are located at the high point of radial runout. These can be matched to the low point on the shaft and housing to reduce the assembled runout. Figure 5-11 **Shaft and Housing Tolerances**: Since their cross-sections are much thinner than standard bearings of the same diameter, Reali-Slim thin section ball bearings are very sensitive to shaft and housing geometry. After installation the bearing tends to take the shape of shaft and housing, so the roundness of the shaft and housing is very important, as is the flatness of the bearing seats. Therefore, Kaydon recommends the following: - A) The flatness tolerance for the bearing seat in the outer housing should be the same as the axial runout of the outer ring of the bearing. - **B)** The roundness tolerance for the outer housing should be the same as the radial runout of the outer ring of the bearing. - C) The roundness tolerance for the shaft should be the same as the radial runout of the inner ring. - D) The flatness tolerance for the bearing seat on the shaft should be the same as the axial runout tolerance of the inner ring. Figure 5-12 Both the shaft and the housing should have a shallow lead-in chamfer for ease of assembly. The fillet radii at the corner of the bearing seats should be smaller than the chamfer on the bearing (dimension "F" in the bearing tables). Where interference fits are used, heat or cold should be used to increase clearance and ease assembly. Allow the assembly to return to room temperature before tightening any fasteners. If a press fit must be used, then Kaydon recommends applying uniform pressure over the entire face of the bearing. **Always press on the ring with the interference fit.** For example, if a press fit is used between the bearing and the shaft, then press on the inner ring, not the outer. **WARNING – Never press across the races, as this can damage the bearing.** **Preload**: The optimal preload for any bearing depends on the application. As the preload increases, the amount of deflection under load is reduced (see Figure 5-13) and the bearing stiffness and natural frequency increase. However, increased preload also leads to higher friction torque. Kaydon's free Reali-Design software can be used to calculate the amount of deflection under an applied load for various amounts of preload. This tool can also be used to calculate the amount of preload needed for any given application. Figure 5-13 **Clamp Rings**: Kaydon recommends that face clamps be used with all bearings. The user should not rely solely on a press fit to hold the bearing in place. Overlapping the clamp rings to form a labyrinth shield, as shown in Figure 5-2, is recommended. This helps keep lubricant in the bearing and contamination out. For bearings used in harsh environments, external seals are recommended. To provide a uniform clamping force, a large number of small fasteners is preferable to a few large ones. The fasteners should be tightened in a "star" pattern to evenly distribute the clamping force. **Lubrication**: Standard open bearings are shipped with preservative oil that is not intended to be a working lubricant. Prior to installation, the bearings should be cleaned and then lubricated with an oil or grease suitable for the loads, speed, temperature, and environment. # Inspection and Installation Procedures for Reali-Slim Thin Section Bearings #### Inspection The unique proportions of Reali-Slim bearings make some of the usual gaging practices impractical. Since very light pressure is sufficient to deflect the thin rings, conventional two-point measurement of bearing bore and outside diameter must not be used. Air gages of the open jet type, or other proximity devices, must be used to hold error from distortion to an acceptable level. Measurements must be made at enough points to yield a true average size, which may not be the mean of the maximum and minimum measurement. A Reali-Slim bearing may be out-ofround in the free state^① more than the ABMA tolerance for its precision class. This presents no problem since the races will conform readily to a round shaft diameter and housing bore. To determine the true runout of each race, by excluding the effect of out of roundness, measurement is made of variation in individual wall thickness. This is schematically illustrated in Figure 5-14. The indicator must contact the raceway at the ball or roller contact, and must be properly positioned for the particular runout (axial or radial) being checked. #### **Measurement of Radial Runout** of Type C Inner Race Figure 5-14 Diametral clearance of Reali-Slim bearings is controlled by selective assembly of races and balls following measurement with gages specially designed for this purpose. Standard inspection and quality control procedures at Kaydon meet the requirements of government procurement agencies and major aerospace industries. However, a certificate of compliance to specifications can be furnished if required. #### Installation To realize the potential accuracy and long life of a Reali-Slim bearing, it is important that the installation be properly done in a clean environment. Cleanliness is vital to satisfactory bearing performance. Work surfaces and tools must be free of dirt, chips, and burrs. Disposable wipers or clean, lint-free cloths should be used. Under no circumstances should a bearing be used as a gage during grinding or machining of mating parts. Just a few grains of grinding grit or chips of metal (soft as well as hard) can seriously damage the precise geometry and finishes of bearing raceways and rolling elements, and are nearly impossible to remove from an assembled bearing. The shaft and housing should be thoroughly cleaned, special attention being given to holes and crevices which could hold dirt, chips, and cutting oil. Unfinished surfaces of castings should be painted or otherwise sealed. The mounting surfaces for the bearing must be carefully checked, cleaned, and lightly oiled to ease fitting and minimize danger of scoring. Housing bore, shaft diameter, shoulder squareness, and fillet sizes should all be verified. The bearing should not be removed from its protective package until this preparation is complete and it is time for installation. ① As explained in ABMA Standard 26.2 #### Inspection and Installation Procedures for Reali-Slim Thin Section Bearings (continued) Interference fitting any bearing to the shaft or housing must be carefully done to avoid damage to the bearing. For Reali-Slim bearings, the use of temperature difference to expand the outer member is recommended to minimize or eliminate the installation force necessary. To calculate the differential required, use a coefficient of expansion of .000007 inch per inch per degree F for AISI 52100 steel races and .0000056 for AISI 440C races. For a Kaydon Precision Class 1 bearing of 2" bore to be fitted to a steel shaft, the differential required to eliminate all interference between a maximum diameter shaft and minimum diameter bearing is 90°F; for a 4" bore it is 60°F. Either dry heat or hot oil may be used. Electrical resistance tape is convenient for the large bearings. Care must be taken to avoid overheating the bearing. Do not exceed 250°F. If pressure is necessary, an arbor press should be used with a suitable pusher to apply the force to the full face of the ring being press fitted — never through the bearing, as damage will be done to the balls and raceways. All duplexed bearings are marked with a single "V" on the bores and outside diameters to indicate the proper relative circumferential position of inner and outer races. This "V" is located at the high points of race eccentricity so that these may be placed at the low points of shaft and housing eccentricity for the canceling effect. Figure 5-15 After mounting, the bearings must be given continued protection from contamination until the assembly is closed. Adherence to these procedures will assure a successful installation. If it is necessary to return a bearing to Kaydon, it should be coated with protective oil and wrapped the same as when shipped from the factory to prevent damage during transit. If bearings are being returned after use for a failure analysis, they should be returned in the as removed condition, since the condition of the part (cleanliness, lubricated condition, etc.) will provide important data for failure analysis. Need Service Fast? 1-800-514-3066 www.kaydonbearings.com # Lubrication and Maintenance of Reali-Slim Thin Section Bearings The lubricant in an anti-friction bearing serves to reduce friction and wear between moving parts, to dissipate heat, and to prevent corrosion of
critical surfaces. Kaydon recommends the selection of the proper lubricant be based on an evaluation by the system design engineer of the operating conditions, including at a minimum: rotational speed, type and magnitude of loads, and ambient temperature. The three types of lubricant commonly used are oil, grease, and dry film or surface treatment. Oil normally provides more complete lubrication. Because of its liquid state, it provides better coverage of the critical surfaces and assists in dissipating heat more readily, the latter being especially true when circulation and cooling are provided. In high-speed applications where the heating effect is more pronounced, oil is specified (see page 105). Where minimum torque is a requirement, oil will usually provide lower friction values. Grease offers certain advantages of its own. Because it is more easily retained, the design of bearing housings and seals is simplified. In many applications, the lubricant itself serves to exclude contaminants when used in conjunction with labyrinths or close clearances between the rotating and stationary structures. For the higher speeds within the range suitable for grease lubrication, a channeling type of grease is often selected. Dry films and surface treatments have been used as bearing lubricants in applications subject to environmental extremes, particularly where conventional lubricants cannot be tolerated or will not survive. A wide variety of types are available for selection; options include Tungsten disulfide, graphite, and Molybdenum It is important to note that the quantity of lubricant affects bearing performance under certain operating conditions. Only relatively small amounts of lubricant are necessary to reduce friction and wear if a film can be maintained on all contacting surfaces. Where speed is significant, excessive amounts of oil or grease will result in higher operating temperatures, leading to the possibility of early bearing fatigue. Depending on the bearing design and application, typical grease fill volumes vary from 10% to 30% of the free space available in the bearing. Unsealed bearings are supplied with a coating of preservative-type oil for the prevention of corrosion during storage. Kaydon recommends that this preservative be removed with clean petroleum solvent prior to lubrication. If the preservative oil is not removed, the compatibility of the lubricant with the preservative oil must be confirmed. In applications where minimum torque is required, the coating should be removed by washing with a clean petroleum solvent followed by immediate relubrication with an oil selected for the application. An option is to have Reali-Slim bearings factory lubricated with a commercial grease or oil selected by the customer in order to facilitate installation. Sealed bearings are packed approximately one-third full with a multi-purpose industrial grease. Exterior surfaces are given a light coating of the same lubricant for protection during storage in the original package. #### **Lubrication and Maintenance of Reali-Slim Thin Section Bearings (continued)** Bearings, with or without seals, can be supplied with optional lubricants. Shown in the accompanying table are some of the greases and oils more frequently specified. Several have been developed to meet the requirements of unusual operating conditions. Because of this and the variation in cost, it is recommended that lubricants be selected with the assistance of a lubrication expert. Due to the finite shelf life of any wet lubricant, factory lubricated bearings should not be held more than two years prior to use. Contact Kaydon for refurbishment instructions for product held beyond two years of receipt. To realize the full potential of a Reali-Slim bearing, Kaydon recommends that the customer's maintenance instructions and schedules consider the operating conditions and include procedures to assure the bearings are adequately protected against the intrusion of foreign matter of all types, and fresh oil or grease introduced with sufficient frequency to cleanse the bearing and assure adequate lubrication. Figure 5-16 **Lubrication Temperature Ranges** # Section 6 — Other Products | | Page
Numbei | |-------------------------------------|----------------| | Bearings for Demanding Applications | 123 | | ■ KT Series Tapered Roller Bearings | 125 | # Bearings for Demanding Applications (Material Codes S, N, X, Y, Q, M, P) The Reali-Slim thin section bearing product line has been expanded to include several additional bearing series specifically engineered to bring the advantages of Reali-Slim bearings to designs intended for service in the most severe or extreme environments. We offer Reali-Slim bearings with a variety of packaged features to meet specific operation requirements. #### Harsh Environments (S,N) Kaydon stainless steel bearings are used where high precision and corrosion resistance are required. Reali-Slim thin section bearings are available in AISI 440C stainless steel races (S) or with Kaydon's exclusive Endurakote plating (N). They are offered in either radial contact "C," angular contact "A," or four-point contact "X" configurations. These bearings are available in popular sizes and minimize the surface degradation and particulate formation so common in harsh environment applications. (See pages 59-71.) #### Low Particle Generation/Marginal Lubrication (X,Y) Hybrid bearings are very well suited for applications where lubrication is marginal. Applications requiring low particle generation, high accuracy, high speeds, and/or which must operate in adverse or no-lube conditions, can benefit from hybrid bearings. Tests have shown that significant reductions in particle generation can be obtained with hybrid designs which incorporate the use of ceramic rolling elements on hardened steel races. In addition, the physical properties of the ceramic rolling elements (precision, hardness, light weight) provide additional benefits such as improved repeatability, low torque, high stiffness, and resistance to wear under marginal or no-lube conditions. #### High Performance, Low Torque (Q) Series Q high-performance bearings are used where low friction torque, smooth operation, and high positional accuracy are required. Series Q high-performance bearings are generally limited to angular contact bearings supplied in either a back-to-back (DB) or face-to-face (DF) configuration. These bearings are made from Precision Class 6 Reali-Slim components with the following special modifications: - Low-torque toroid ball spacers - Special cleanroom cleaning - Special lubrication - Grade 10 balls or better - Special ball path finishing - Special preload assembly #### **High Temperature (M)** Standard bearings are processed for operating temperatures up to 250°F. At temperatures beyond this limit, reductions in material hardness can affect bearing capacity, which will reduce the bearing's theoretical fatigue life. When full capacity is required at higher temperatures, the use of series "M" bearings may be required. Manufactured from M50 tool steel for balls and races and assembled with stainless steel cages, these bearings can provide full bearing capacity at temperatures greater than 250°F. However, careful consideration to the bearing lubricant must also be exercised. #### **Bearings for Demanding Environments (continued)** #### **Chemical Resistant (P)** In applications where both corrosion resistance and chemical resistance are required, series P bearings may be required. These bearings feature AISI 17-4PH steel races and ceramic balls. They are manufactured to provide a greater level of corrosion and chemical resistance than either Kaydon Series N or Series S bearings. Due to the hardening limitations of AISI 17-4PH steel, an adjustment factor of .17 must be applied to the standard dynamic capacity ratings. Thus, the use of P Series bearings should be carefully reviewed prior to selection to determine if the life and capacity are adequate. Tremendous benefits in performance can be obtained by matching not just size but also material to the application. These alternative race and ball materials interact differently than traditional chrome steel bearings. Capacities, life calculations and stiffness will differ from other products in this catalog. Contact Kaydon for technical characteristics of hybrid Reali-Slim bearings. #### **Materials** | Races | AISI 17-4PH steel | | | | |-------|--|--|--|--| | Balls | Borosilicate, glass, or ceramic | | | | | Como | Type A; PTFE or Vespel* toroid ball spacers or 300 series steel ring | | | | | Cage | Types C & X; Stainless steel or | | | | | | non-metallic composite ring | | | | #### **Specifications for Hybrid Reali-Slim Bearings** | ITEM | DESCRIPTION MATERIAL ANALYSIS | REFERENCE SPECIFICATION | | | |---|---|--|--|--| | RACES | AISI 440C Stainless steel | AMS 5630 | | | | BALLS | Ceramic: Silicon Nitride | | | | | SEPARATORS
C, X BEARINGS
A BEARINGS | P Type—Brass or non-metallic composite L Type—Nylon, fiberglass reinforced R Type—Brass or non-metallic composite G Type—Nylon, fiberglass reinforced other options, see <u>p. 100</u> | ASTM B-36 or B-134
ASTM B-36 or B-134 | | | | | PRECISION | | | | | RACE DIMENSIONS | Kaydon Precision Class 1, Higher classes available | ABMA ABEC-1F or better | | | | RACE RUNOUTS | Kaydon Precision Class 1, Higher classes available | ABMA ABEC-1F or better | | | | BALLS | ABMA Grade 10 Stainless steel or Grade 5 ceramic | ANSI/ABMA/ISO 3290 | | | ### **KT Series** #### **Tapered Roller Bearings** The Kaydon concept of standard bearings with lightweight, thin
sections and large bore diameters includes tapered and radial roller bearings as well as ball bearings. KT Series tapered roller bearings offer advantages to those designs requiring a bearing of higher capacity, which would benefit from the many unique advantages of a thin section bearing. KT tapered roller bearings are used to advantage in applications ranging from oil field equipment to machine tool tables where space and weight considerations are meaningful. KT Series standard tapered roller bearings have races and rollers of through-hardened AISI 52100 steel with a one-piece stamped steel cage. When specified, they can be furnished in pairs, match ground for use with or without spacers. The tapered roller bearings in this catalog are of the single-row radial type, designed primarily for application of radial load. While of separable construction, the rolling elements are retained in the separator. Since this bearing assumes a contact angle of approximately 12° under an axial force, it does have a reasonable amount of thrust capacity. This capacity is unidirectional and is realized when the axial force is applied to the wide faces of the races. As in the case of the angular contact ball bearing, the single row tapered roller bearing is commonly mounted in opposition to another bearing (usually of similar construction) to provide an axial force for establishing and maintaining the angle of contact. Two bearings of this type maybe mounted with the lines of contact converging outside of the bearings (back-to-back) or inside (face-to-face) with the former preferred for stability in the presence of overturning load. | KAYDON | Bore | Outside Dia. | Assem. | Factor | | ng at
PM for | Cone | Cup | | Shoulder | Diameters | | Approx. | |---------|--------|--------------|------------|--------|----------------|-----------------|------------|-------|------------|------------|------------|------------|----------------| | Bearing | | D | Width
T | K | | rs. L-10 | Width
B | Width | Sh | aft | Ног | ısing | Bearing
Wt. | | Number | (IN) | (IN) | (IN) | (IN) | Radial
(LB) | Thrust
(LB) | (IN) | (IN) | S1
(IN) | S2
(IN) | H1
(IN) | H2
(IN) | (LB) | | KT-070 | 7.000 | 8.500 | .812 | 1.74 | 4970 | 2860 | .812 | .625 | 7.375 | 7.300 | 8.125 | 8.250 | 3.11 | | KT-091 | 9.125 | 10.250 | .718 | 1.79 | 4920 | 2750 | .722 | .597 | 9.625 | 9.312 | 9.850 | 10.050 | 2.88 | | KT-098 | 9.875 | 11.500 | 1.062 | 1.85 | 9260 | 5000 | 1.062 | .875 | 10.375 | 10.225 | 11.063 | 11.250 | 6.05 | | KT-100 | 10.000 | 11.125 | .625 | 1.79 | 4020 | 2250 | .625 | .500 | 10.500 | 10.300 | 10.750 | 10.900 | 2.88 | | KT-110 | 11.000 | 12.500 | .875 | 1.86 | 7620 | 4100 | .875 | .688 | 11.438 | 11.250 | 12.000 | 12.250 | 5.06 | | KT-112 | 11.250 | 12.750 | .812 | 1.86 | 7150 | 3860 | .812 | .625 | 11.688 | 11.500 | 12.313 | 12.500 | 4.72 | | KT-118 | 11.875 | 13.562 | .937 | 1.76 | 7250 | 4120 | .812 | 1.125 | 12.438 | 12.210 | 13.000 | 13.320 | 6.63 | | KT-130 | 13.000 | 14.562 | .843 | 1.44 | 5580 | 3880 | .843 | .594 | 13.438 | 13.320 | 14.125 | 14.300 | 5.20 | | KT-132 | 13.250 | 15.000 | .937 | 1.69 | 6160 | 3650 | .937 | .750 | 13.875 | 13.625 | 14.375 | 14.500 | 6.79 | | KT-151 | 15.125 | 17.375 | 1.125 | 1.72 | 11760 | 6840 | 1.125 | .812 | 15.750 | 15.625 | 16.750 | 16.875 | 13.57 | | KT-165 | 16.500 | 18.750 | .875 | 1.78 | 8220 | 4620 | .882 | .812 | 17.250 | 17.000 | 18.125 | 18.500 | 11.14 | | KT-180 | 18.000 | 19.625 | .812 | 1.69 | 7400 | 4330 | .812 | .687 | 18.438 | 18.375 | 19.188 | 19.300 | 8.19 | | KT-200 | 20.000 | 21.750 | .812 | 1.80 | 7930 | 4400 | .812 | .687 | 20.625 | 20.375 | 21.125 | 21.250 | 9.78 | Tolerances are: Bore: +.001" - .000" up to KT-110; +.002" - .000" for KT-110 to KT-200 Outside Diameter: Same as for bore. Width: \pm .010" up to KT-112; \pm .015" for KT-112 to KT-200 Cup Radial Runout .0015" Max. F.I.M., Cone Radial Runout .0020" Max. F.I.M. # Section 7 — Appendix and Sales Information | | Page
Numbe | |--|---------------| | Terms and Definitions | 127 | | Warranty Information and Legal Notices | 128 | | ■ Disclaimer | | | ■ Hazard Notice | | | ■ Terms and Conditions of Sale - Warranty | | | Responsibility Statement and Registered Trademarks | | | Design Aids and Technical Literature | 131 | | Distributors and Other Help | 132 | | Request for Bearing Proposal Data Form | 133 | | Conversion Factors | 135 | # Bearing Definitions and Terms #### **Axial Clearance:** The total amount of free axial movement between the inner and outer race of a bearing. Bearings with internal clearance will contain both axial and radial clearance. #### **Axial Load:** Load applied to the bearing parallel with the bearing axis of rotation — also known as thrust load. #### **Capacity:** Dynamic capacity is the basic "C" rating which represents a load that the bearing can theoretically endure for 1 million revolutions. Static capacity is the approximate load the bearing can endure before permanent deformation occurs on the ball or raceway. Published capacities do not apply to hybrid series bearings P, X, and Y. Contact Kaydon product engineering for additional information. #### **Deflection:** The amount of movement associated with compression or stretching of bearing components when placed under load. #### **Diameter Tolerance:** The range in which the average diameter of a bore or O.D. may fall. Reali-Slim bearings are considered "non-rigid" rings and all diameters are averaged using multi-point gaging techniques per ABMA Std. 26.2. #### **Diametral Clearance:** The total free movement of the inner race relative to the outer race in a radial plane, also referred to as radial clearance. "X" and "C" type bearings are made with some internal clearance as a standard factory internal fit before mounting. #### L₁₀ Life: The theoretical life span of a bearing under a specific set of dynamic operating conditions associated with 90% reliability. #### **Moment Load:** Load such that when applied to a bearing system, tends to overturn or bend the axis of rotation in an angular direction. #### **Pitch Diameter:** The theoretical median diameter of a bearing, which passes through the center of the rolling elements. Reali-Slim pitch diameters are equivalent to: (OD+Bore)/2. #### **Preload:** The amount of load placed on the rolling elements before the application of any external loads. Preload can be created in "X" and "C" type bearings by controlling internal fits of the ball and the raceway at the factory. Preload in angular contact bearings is controlled by a "preload gap" between the duplexed races. Tight mounting conditions will increase the final bearing preload. Preload stiffens the bearing and eliminates axial and radial play, but the load on the balls increases friction and shortens L₁₀ life. #### **Radial Load:** Load applied perpendicular to the bearing axis of rotation. #### **Runout:** The maximum axial or radial race wall thickness variation of an inner or outer bearing race. Runout influences the repeatable location variation of rotating components. #### Standard bearing nomenclature ### Warranty Information and Legal Notices #### **Disclaimer** The design and application information contained in this catalog is for illustration only. Responsibility for the application of the products contained in this catalog rests solely with the equipment designer or user. In spite of our best efforts, the material contained in this catalog may contain inaccuracies and typographical errors. #### **Hazard Notice** The use of any part, such as those described in this catalog, may be hazardous and have the potential to cause serious injury, including death, to people or property. The purchaser is responsible for evaluating the hazards associated with any part used in their application. # Kaydon Standard Terms and Conditions of Sale - Scope. Prices quoted are for acceptance within thirty (30) days from date of quotation unless otherwise stated. The terms and conditions of sale set forth below apply to all quotations made and purchase orders accepted by Seller. - 2) Acceptance of Orders. All orders are subject to acceptance by authorized officials at Seller's division or subsidiary offices. All sales are made in accordance with these terms and conditions of sale. Any other document containing additional or different terms and conditions, or any attempt to vary these terms and conditions, shall be deemed a material alteration or modification hereof and all sales are made without such additional or different terms and conditions. - 3) Scheduling. Shipping dates are approximate and are based upon prompt receipt of all necessary information. Buyer shall furnish to Seller written shipping instructions in sufficient time to permit Seller to make shipment at Seller's option within any time or times herein specified for shipment. In the event of a delay in delivery due to any reason described in Section 16 below, the delivery date shall be deferred for a period equal to the time lost by reason of delay. In the event such delay shall continue for more than two weeks, then, at Seller's option, the order will be deemed cancelled without liability to Seller. - 4) Quantities. Seller reserves the right to ship quantities (or weight, as applicable) that are within ten percent (10%) of the quantity (or weight) specified by Buyer, and Seller shall not be liable for any overshipment or undershipment within this limit. In the event of any overshipment within this limit, Buyer shall pay for the actual quantity (or weight) shipped. - 5) Delivery and Transportation. Seller's delivery dates are approximate. Seller shall not be liable for delays in delivery or other defaults in performance of this order arising out of causes beyond Seller's control. Unless otherwise agreed to in writing by Seller, delivery of the products hereunder shall be made F.O.B. at the point of shipment with
delivery to the initial carrier to constitute delivery to the Buyer. Title to products passes to Buyer and products are at risks to Buyer from and after delivery to the initial carrier. Transportation expenses will be paid by Buyer and risk of loss, shortage, delay or damage to products in transit shall fall upon Buyer, whose responsibility it shall be to file claims with the carrier. - 6) Terms of Payment. Invoices are due and payable (30) thirty days from the date of invoice unless other terms are shown on the face hereof. A 1-1/2% (one-and-a-half percent) carrying charge will be applied to all past due amounts. If shipments are delayed by Buyer, payments shall become due on the date when Seller is prepared to make shipment. If the work covered by the purchase order is delayed by Buyer, payments shall be made based on the purchase price and the percentage of completion. Seller reserves the right to ship to its order and make collection by sight draft with bill of lading attached. - 7) Taxes. Prices do not include foreign or domestic sales, use, excise or similar taxes. Consequently, in addition to the prices specified herein, the amount of any present or future sales, use, excise or other general or specific tax, or imports, duties or penalties or other governmental charges fixed or imposed by any lawful authority(s) upon or applicable to the production, sale, shipment, delivery or use of the products sold hereunder shall be added to the price and be paid by Buyer or, in lieu thereof, Buyer shall provide Seller with a tax exemption certificate acceptable to the taxing authorities. If such tax is paid by Seller, Buyer shall reimburse Seller upon presentation of invoice. - 8) Warranty. Seller warrants the products manufactured by it to be free from defects in material and workmanship only. The extent of Seller's obligation hereunder is to either repair or replace its work or the defective products, F.O.B. Seller's plant, if returned within twelve (12) months after date of delivery. No allowance will be granted for repairs or alterations made by Buyer without Seller's written approval. The warranty shall not be construed to cover the cost of any work done by Buyer on material furnished by Seller or the cost of removal or installation of product. Products and parts not manufactured by Seller are warranted only to the extent and in the manner that the same are warranted to Seller by Seller's vendors and then only to the extent Seller is able to enforce such warranty. There is no other warranty, expressed or implied, in fact or by law. THE FOREGOING STATES THE SOLE AND EXCLUSIVE WARRANTY OF BUYER AND THE SOLE AND EXCLUSIVE WARRANTY OF SELLER. THE WARRANTIES STATED IN THIS PARAGRAPH ARE IN LIEU OF ALL OTHER WARRANTIES WRITTEN OR VERBAL, STATUTORY, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. Seller's agreement to sell the products is made upon the condition and agreement that, with respect to the products, there have been no representations or undertakings made by or on behalf of Seller and Seller makes no guarantees or warranties, expressed or implied, in fact or in law, except as expressly stated above. - 9) Limitation of Liability. Seller shall not be responsible, obligated, or liable for any injury or damage resulting from an application or use of its products, either singly or in combination with other products. SELLER'S SOLE LIABILITY FOR BREACH OF WARRANTY OR ANY OTHER CLAIM SHALL BE LIMITED TO REPAIR OR REPLACEMENT OF THE PRODUCTS OR RETURN OF THE PURCHASE PRICE, AT SELLER'S SOLE OPTION. SELLER SHALL NOT BE LIABLE FOR DAMAGES, INCLUDING BUT NOT LIMITED TO CONSEQUENTIAL OR SPECIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE PRODUCTS OR ARISING OUT OF ACCEPTANCE OF THIS ORDER. - 10) Acceptance of Products. Products will be deemed accepted without any claim by Buyer unless written notice of non-acceptance is received by Seller within thirty (30) days of delivery if shipped F.O.B. point of shipment, or ten (10) days of delivery if shipped F.O.B. point of destination. Such written notice shall not be considered received by Seller unless it is accompanied by all freight bills for such shipment, with agent's notations as to damages, shortages and conditions of equipment, containers and seals. Non-accepted products are subject to return policy stated below. - 11) Return of Products. No product may be returned to Seller without Seller's prior written permission, which permission may be withheld by Seller in its sole discretion. #### **Warranty Information and Legal Notices (continued)** - **12) Damages to Returned Products.** If Buyer elects to return product(s) to Seller for refurbishment, Buyer agrees to accept all risk of damage or destruction of such returned product(s), and Seller shall not be liable for any failure or inability on the part of Seller to complete refurbishment upon any such returned products. - 13) Limitations of Actions. Irrespective of whether Seller agreed to perform field start-up or any other service after the delivery of the product, all claims or actions must be brought within one (1) year of date of tender of delivery, or eighteen (18) months of Buyer's order, if no tender of delivery is made, notwithstanding any statutory period of limitation to the contrary. - 14) Patents. Buyer shall hold Seller harmless against any expense or loss resulting from infringement of patents or trademarks arising from compliance with Buyer's design, specifications or instructions. - The sale of products or parts thereof by Seller does not convey any license by implication, estoppel, or otherwise under patent claims covering combinations of these products or parts with other devices or elements. - **15) Financial Responsibility.** If in the sole judgment of Seller the financial resources of Buyer become impaired or unsatisfactory at any time during the term of the agreement between the parties, then Seller may require of Buyer a deposit or suitable security or margin for performance by Buyer in such amount or amounts from time to time as Seller shall specify. Upon requirement of deposit, Buyer shall make such deposit not later than the close of Seller's next business day. If Buyer fails to make such deposit, then Seller may at its option (1) cancel the agreement between the parties or the undelivered portion thereof, in which case Buyer agrees to pay Seller the difference between the market price on date of cancellation and the contract price; (2) resell at any time for Buyer's account all or any undelivered portion of the products, in $which \, case \, Buyer \, agrees \, to \, pay \, Seller \, the \, difference \, between \, the \,$ resale price and the contract price, or (3) otherwise change the terms of payment. In the event Buyer shall be or becomes insolvent, or admits in writing Buyer's inability to pay Buyer's debts as they mature, or if Buyer shall make an assignment with creditors or if there are instituted by or against Buyer proceedings in bankruptcy or under any insolvency laws or for reorganization, receivership or dissolution, Seller may terminate the agreement between the parties at any time and without notice. - **16) Force Majeure.** In the event of war, fire, epidemics, quarantine restrictions, flood, strike, labor trouble, breakage of equipment, accident, riot, the imposition of any government price control regulation or any other act of governmental authority, acts of God or other contingencies (whether similar or dissimilar to the foregoing) beyond the reasonable control of Seller, interfering with the production, supply, transportation, or consumption practice of Seller at the time respecting the products covered by the agreement between the parties or in the event of inability to obtain on terms deemed by Seller to be practicable any raw material (including energy source) used in connection therewith, quantities so affected shall be eliminated from the contract without liability, but the contract shall otherwise remain unaffected. Seller may during any period of shortage due to any of these causes, allocate its supply of such raw material among its various uses therefore (e.g. manufacturing and sales) in such manner as Seller deems practicable and allocate its supply of such products among such various uses thereof in any manner which Seller deems fair and reasonable. - 17) Reasonable Attorneys' Fees. In the event suit or other proceeding shall be brought for the recovery of the purchase price, or any unpaid balance or the breach by Buyer of any term of the agreement between Seller and Buyer, Buyer shall pay to Seller, in addition to any damages provided by law, reasonable attorneys' fees and costs of collection. - **18) Security Title.** Security title and right of possession of the products sold hereunder shall remain with Seller until all payments due from Buyer to Seller (including deferred payments whether evidenced by notes or otherwise) shall have been made in cash and Buyer agrees to do all acts necessary to perfect and maintain such security right and title in Seller. - 19) Cancellations. Buyer may cancel an order only upon written consent and upon payment to Seller of cancellation charges, which shall take into account among other things expenses incurred and commitments already made by Seller, and Seller's profit margin. #### 20) General - (a) The agreement between Buyer and Seller and matters connected with the performance thereof shall be construed in accordance with and governed by the law of the State of Seller's accepting offices, as referenced in Section 2, as though it were executed and performed entirely within the State of Seller's accepting offices, as referenced in Section 2, and shall be construed to be between merchants. - **(b)** Any assignment of the agreement between Buyer and Seller or any rights or obligation of the agreement by Buyer
without written consent of Seller shall be void. - (c) Except as may be expressly provided to the contrary in writing, the provisions of the agreement between Buyer and Seller are for the benefit of the parties hereto and not for any other person. - (d) No waiver by Seller of any breach of any provision of the agreement between Buyer and Seller will constitute a waiver of any other breach. - (e) The terms and conditions set forth above contain all the representations, stipulations, warranties, agreements and understandings with respect to the subject matter of the agreement between Buyer and Seller, and its execution has not been induced by any representation, stipulation, warranty, agreement or understanding (including any course of prior dealings between the parties hereto) of any kind other than those set forth above. - (f) No amendment, addition to, alteration, modification or waiver of all or part of the agreement between Buyer and Seller shall be of any force or effect unless in writing and signed by Seller. If the terms and conditions set forth above conflict with those of any purchase order of Buyer written in connection with the sale of the products or any portion thereof, then the terms set forth above shall govern. - 21) Arbitration. Any controversy or claim arising out of or relating to the agreement between Buyer and Seller, or the breach thereof, shall be settled in the City and State of the Seller's accepting offices, as referenced in Section 2, by arbitration in accordance with the Rules of the American Arbitration Association, and judgment upon the award rendered by the arbitrator may be entered in any court having jurisdiction thereof. ### "RESPONSIBILITY STATEMENT" ### **WARNING** FAILURE OF, OR IMPROPER SELECTION OF, OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE. This document and other information from Kaydon Bearings and authorized distributors provides product or system options for further investigation by users having technical expertise. Before you select or use any product or system, it is important that you analyze all aspects of your application and review the information concerning the product in the current product catalog. The user, through its own analysis and testing, is solely responsible for making the final selection of the product or system and assuring that all performance, safety and warning requirements of the application are met. The products and systems described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Kaydon Bearings at any time without notice. The following are registered trademarks of Kaydon Bearings: Endurakote, Endura-Slim, Reali-Design, Reali-Design MM, Reali-Slim, Reali-Slim TT, Reali-Slim MM, Ultra-Slim # Application Information to Help In Your Designs All available for download from our website $\underline{www.kaydonbearings.com}$. ### 1. Reali-Slim thin section bearings catalog Complete engineering and selection information on the entire product line, including Reali-Slim MM metric series, Reali-Slim TT turntable series, and Ultra-Slim series. 136 pages. #### Catalog 300 ### 2. Stainless steel Reali-Slim bearings brochure Open, sealed and custom bearings for harsh environments, including specifications, mountings and typical applications. 4 pages. **Stainless Steel Bearings** ### 3. Reali-Design and Reali-Slim MM software Speeds Reali-Slim bearing selection process. Includes data sheets, life calculations, and CAD-ready DXF library for both inch and metric series. Software downloadable from www.kaydonbearings.com. ### 4. Kaydon Bearings applications guide See more than 160 applications for Reali-Slim and slewing ring bearings, in markets as diverse as aerospace, semiconductors and heavy equipment. 8 pages. **Applications Guide** ### 5. Slewing ring/turntable bearing catalog Complete engineering and selection information on standard and custom turntable bearings up to 240". 132 pages. **Catalog 390** ### 6. Bearing Remanufacturing program brochure Overview of ISO-certified repair services provided by Kaydon to remanufacture 10" to 240" diameter bearings to likenew quality and warranty, any OEM. 6 pages. **Remanufactured Bearings** # Help is Just a Call, Click or Fax Away - 1) Call and ask to speak with an application engineer. In the U.S.; call toll free, 800-514-3066. From other countries, call 231-755-3741. - 2) Fill out the step-by-step Request for Proposal form on the facing page and fax it to Kaydon at 231-759-4102. - 3) Contact one of the many qualified distributors who represent Kaydon in North America and around the world. Kaydon distributors are trained bearing specialists with a wide range of applications experience, backed by our comprehensive technical support program. For the name and location of the Kaydon distributor nearest you, please visit the appropriate page at our website: #### U.S. and Canada - http://www.kaydonbearings.com/distributors.htm #### International - http://www.kaydonbearings.com/international.htm By phone, fax, or through a distributor, the Kaydon team welcomes your inquiry and looks forward to an opportunity to serve your bearing needs. ### Request For Bearing Proposal Data Form Detach and fax completed form or complete and submit online at www.kaydonbearings.com. #### **Attention: Kaydon Sales** | | Date: | |--|---| | TO: Kaydon Bearings | FDOM. | | • | FROM: | | Muskegon, Michigan 49443 Fax: 231-759-4102 Phone: 231-755-3741 | - | | Fax: 231-759-4102 Phone: 231-755-3741 | | | Project Description: | | | Application: | | | Туре: | | | Annual Quantity: | | | Quotation Quantity: | | | Program Start Date: | | | Response from Kaydon Needed by: | | | For a preferred Size and Style of Bearing: | | | Preselected Kaydon Bearing Model #: | | | or | | | Bore:inches O.D.:inches | Width:inches | | or | | | Envelope Size : Min. Bore inches | Max. O.D. inches Max. Width inches | | ☐ For an L, life calculation: [Describe loads and/or mass on | bearing] | | Dynamic Radial avg.: pounds | - | | Dynamic Axial avg.: pounds | | | Dynamic Moment avg.: inch-lbs. | | | RPM (max) RPM (min) or Osc | illation: Angle Duty Cycle | | Bearing axis is vert horiz with the inner outer | | | Minimum Hours needed: | Tace Totalion Telative to load | | | | | For a Safety factor calculation: [describe any maximum sl | | | [Note: Do not include Safety factor in these loading value | s !!!!] | | Static Radial Max: pounds | | | Static Axial Max: pounds | | | Static Moment Max: inch-lbs. | | | For determining Shaft and Housing sizes: [Attach propos | ed mounting sketch if possible! | | | mperature Normal Temperature High Temperature | | Shaft | | | Housing | | | _ | | | For Accuracy concerns: | | | Kaydon Precision Class | | | or | Mounting Sketch | | Radial Runout Axial Runout | | | For Stiffness or Deflection concerns: | | | Springrate: | | | or | | | Movement under load: | | | movement under loud. | Attach a separate document | | For Torque to Rotate concerns: | to show sketch | | Maximum allowable Starting Torque: | to show sketch | | For Other or Environmental Conditions: | | | Operating Temperature Range: | | | Vacuum Range: | | | Proposed Lubricant is: | | | Seals or Shields: | | | Protective Coating: | | | r rotective coating. | | **Fax Request for Bearing Proposal Data Form to:** (231) 759-4102 # **Conversion Factors** | | English-Metric | Metric-English | | | |-------------------|---------------------------|------------------------|--|--| | Longth | 1 in = 25.4 mm | 1 mm = .03937 in | | | | Length | 1 ft = .3048 m | 1 m = 3.281 ft | | | | Force | 1 lb = 4.448 N | 1 N = 0.2248 lb | | | | | 1 ft-lb = 1.356 N-m | 1 N-m = .7376 ft-lb | | | | Torque/Moment | 1 in-lb = .113 N-m | 1 N-m = 8.851 in-lb | | | | | 1 in-oz = 72.01 gf-cm | 1 gf-cm = .01389 in-oz | | | | Weight | 1 lb = .4536 kg | 1 kg = 2.205 lb | | | | weight | 1 oz = 28.35 g | 1 g = .03527 oz | | | | Stress / Pressure | 1 psi = 6895 Pa (N/m²) | 1 Pa = .000145 psi | | | | Stress / Pressure | 1 ksi = 6.895 MPa (N/mm²) | 1 MPa = .145 ksi | | | | Temperature | (°F -32)/1.8 = °C | 1.8 x °C + 32 = °F | | | (rounded to 4 significant digits) **Kaydon Bearings** 2860 McCracken Street Muskegon, Michigan 49441 U.S.A. **231.755.3741 tel** 800.514.3066 free 231.759.4102 fax bearings@kaydon.com www.kaydonbearings.com